Philosophy Lexicon of Arguments

Search  
 
Equivalence: Relation between sentences. It exists if both sides have the same truth value, so that they are both true or both false.
 
Author Item Excerpt Meta data

 
Books on Amazon:
Bertrand Russell
I 35
Def formally equivalent/Principia Mathematica/Russell: saying that j x and y x are formally equivalent is the same as to say: j x^ und y x^ have the same extension.
I 43
Equivalence: in classes: Identity notation:
" x e a ‚Č°x x e b " - implication: in classes inclusion (proper subset).

R I
B. Russell/A.N. Whitehead
Principia Mathematica Frankfurt 1986

R II
B. Russell
Das ABC der Relativitätstheorie Frankfurt 1989

R IV
B. Russell
Probleme der Philosophie Frankfurt 1967

R VI
B. Russell
Die Philosophie des logischen Atomismus
In
Eigennamen, U. Wolf (Hg), Frankfurt 1993

R VII
B. Russell
Wahrheit und Falschheit
In
Wahrheitstheorien, G. Skirbekk (Hg), Frankfurt 1996


> Counter arguments against Russell
> Counter arguments in relation to Equivalence



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-05-24