Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Quantifiers: in the predicate logic, quantifiers are the symbol combinations (Ex) and (x) for the set of objects to which one or more properties are attributed to. A) Existence quantification (Ex)(Fx) ("At least one x"). B) Universal quantification (x)(Fx) ("Everything is F"). For other objects e.g. y, z,… are chosen. E.g. (x) (Ey) (Fx > Gy). See also quantification, generalized quantifiers.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
IV 208
Quantifier/Linguistics/Lewis: quantifier phrase: E.g. "some pigs grunt" - a quantifier is not a name - therefore: if a quantifier phrase QP goes together with an S/N, it must be, therefore, an S/(S/N). - S/N: Verbal phrase, takes a name N to form a sentence S - quantifier phrases are always replaceable by a name.
---
Sw I 82
Plural quantifier/Lewis/Black: e.g. "some" is problematic in everyday language - plural quantifier: replaces singular constructions - "are few" is then a property. - plural quantifier can simulate quantification: by quantification in the plural, about couples.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

LW I
D. Lewis
Die Identität von Körper und Geist Frankfurt 1989

LW II
D. Lewis
Konventionen Berlin 1975

LW IV
D. Lewis
Philosophical Papers Bd I New York Oxford 1983

LW V
D. Lewis
Philosophical Papers Bd II New York Oxford 1986

LwCl I
Cl. I. Lewis
Mind and the World Order: Outline of a Theory of Knowledge (Dover Books on Western Philosophy) 1991


Send Link
> Counter arguments against Lewis

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-11-19