## Philosophy Lexicon of Arguments | |||

| |||

Quantifiers: in the predicate logic, quantifiers are the symbol combinations (Ex) and (x) for the set of objects to which one or more properties are attributed to. A) Existence quantification (Ex)(Fx) ("At least one x"). B) Universal quantification (x)(Fx) ("Everything is F"). For other objects e.g. y, z,… are chosen. E.g. (x) (Ey) (Fx > Gy). See also quantification, generalized quantifiers._____________ Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||

Author | Item | More concepts for author | |
---|---|---|---|

Cresswell, M.J. | Quantifiers | Cresswell, M.J. | |

Gärdenfors, Peter | Quantifiers | Gärdenfors, Peter | |

Geach, Peter T. | Quantifiers | Geach, Peter T. | |

Hintikka, J. | Quantifiers | Hintikka, J. | |

Langacker, R. W. | Quantifiers | Langacker, R. W. | |

Lewis, David | Quantifiers | Lewis, David | |

Lorenzen, Paul | Quantifiers | Lorenzen, Paul | |

Quine, Willard Van Orman | Quantifiers | Quine, Willard Van Orman | |

Russell, Bertrand | Quantifiers | Russell, Bertrand | |

Stalnaker, R. | Quantifiers | Stalnaker, R. | |

Stechow, A. von | Quantifiers | Stechow, A. von | |

Wessel, H. | Quantifiers | Wessel, H. | |

Wittgenstein, L. | Quantifiers | Wittgenstein, L. | |

Ed. Martin Schulz, access date 2017-09-20 |