## Philosophy Lexicon of Arguments | |||

| |||

Axiom: principle or rule for linking elements of a theory that is not proven within the theory. It is assumed that axioms are true and evident. Adding or eliminating axioms turns a system into another system. Accordingly, more or less statements can be constructed or derived in the new system. See also axiom systems, systems, strength of theories, proofs, provability._____________ Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||

Author | Item | Summary | Meta data |
---|---|---|---|

Books on Amazon | I 220 Axiom/Field: a required law can easily be proven by adding it as an axiom - Vs: but then you need for each pair of distinct predicates an axiom that says that the first one and the second does not, e.g. "The distance between x and y is r times that between z and w". - Everything that substantivalism or heavy-duty Platonism may introduce as derived theorems, Relationism must introduce as axioms ("no empty space"). - That leads to no correct theory. - Problem of quantities. - The axioms used would precisely be connectable if also non-moderate characterizations are possible. - The modal circumstances are adequate precisely then when they are not needed. I 249ff Axiom/Mathematics/Necessity/Field: axioms are not logically necessary, otherwise we would only need logic and no mathematics. I 275 Axioms/Field: we then only accept those that have disquotationally true modal translations. - (Because of conservativism). Conservatism: is a holistic property, not property of the individual axioms. - Acceptability: of the axioms: depends on the context. - Another theory (with the same Axiom) might not be conservative. - Disquotational truth: can be better explained for individual axioms, though. I 276 E.g. Set theory plus continuum hypothesis and set theory without continuum hypothesis can each be true for their representatives. - They can attribute different truth conditions. - This is only non-objective for Platonism. - The two representatives can reinterpret the opposing view, so that it follows from their own view. (>Gödel: relative consistency). II 142 Axiom/(s): not part of the object language. - Scheme formula: can be part of the object language. - Field: The scheme formulacaptures the notion of truth better. _____________ Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. |
Fie I H. Field Realism, Mathematics and Modality Oxford New York 1989 Fie II H. Field Truth and the Absence of Fact Oxford New York 2001 Fie III H. Field Science without numbers Princeton New Jersey 1980 |

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei

Ed. Martin Schulz, access date 2018-04-22