## Philosophy Lexicon of Arguments | |||

| |||

Axiom: principle or rule for linking elements of a theory that is not proven within the theory. It is assumed that axioms are true and evident. Adding or eliminating axioms turns a system into another system. Accordingly, more or less statements can be constructed or derived in the new system. > System._____________ Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||

Author | Item | More concepts for author | |
---|---|---|---|

Bigelow, John | Axioms | Bigelow, John | |

Brentano, F. | Axioms | Brentano, F. | |

Cresswell, M.J. | Axioms | Cresswell, M.J. | |

Dedekind, R. | Axioms | Dedekind, R. | |

Duhem, Pierre | Axioms | Duhem, Pierre | |

d’Abro, A. | Axioms | d’Abro, A. | |

Einstein, A. | Axioms | Einstein, A. | |

Field, Hartry | Axioms | Field, Hartry | |

Genz, H. | Axioms | Genz, H. | |

Hacking, Ian | Axioms | Hacking, Ian | |

Hilbert, D. | Axioms | Hilbert, D. | |

Kripke, Saul Aaron | Axioms | Kripke, Saul Aaron | |

Leibniz, G.W. | Axioms | Leibniz, G.W. | |

Lukasiewicz, J. | Axioms | Lukasiewicz, J. | |

Strawson, Peter F. | Axioms | Strawson, Peter F. | |

Tarski, A. | Axioms | Tarski, A. | |

Waismann, Friedrich | Axioms | Waismann, Friedrich | |

Zermelo, E. | Axioms | Zermelo, E. | |

Ed. Martin Schulz, access date 2017-09-20 |