Economics Dictionary of ArgumentsHome![]() | |||
| |||
Proofs: A proof in logic, mathematics is a finite string of symbols, which derives a statement in a system from the axioms of the system together with already proven statements. See also Proof theory, Provability, Syntax, Axioms._____________Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||
Author | Concept | Summary/Quotes | Sources |
---|---|---|---|
Hennig Genz on Proofs - Dictionary of Arguments
II 187 Proofs/Genz: a proof is not easy to distinguish from its protocol. Can there be any evidence that does not allow a protocol? Quantum computer/Genz: a quantum computer ceases to function if interventions are made in between. Therefore, evidence could not be controlled by it. The computer itself cannot print out the process it has gone through. But one can see at the end whether it was right or not. >Provability, >Quantum mechanics._____________Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition. |
Gz I H. Genz Gedankenexperimente Weinheim 1999 Gz II Henning Genz Wie die Naturgesetze Wirklichkeit schaffen. Über Physik und Realität München 2002 |
Authors A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Concepts A B C D E F G H I J K L M N O P Q R S T U V W X Y Z