Dictionary of Arguments

Screenshot Tabelle Begriffe

 
Infinity Axiom: The infinity axiom is an axiom of set theory, which ensures that there are infinite sets. It is formulated in e.g. such a way that a construction rule is specified for the occurrence of elements of a described set. If {x} is the successor of x, the continuation is formed by the union x U {x}. See also set theory, successor, unification, axioms.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.
 
Author Item    More concepts for author
Field, Hartry Infinity Axiom   Field, Hartry
Gödel, Kurt Infinity Axiom   Gödel, Kurt
Hilbert, David Infinity Axiom   Hilbert, David
Quine, Willard Van Orman Infinity Axiom   Quine, Willard Van Orman
Tarski, Alfred Infinity Axiom   Tarski, Alfred
Wittgenstein, Ludwig Infinity Axiom   Wittgenstein, Ludwig

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z