Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Motion: spatial variation of one or more observed or not observed objects in time. Problems arising in connection with attribution or withdrawal of predicates. See also change, temporal identity, process, flux, vectors.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
EMD II 295
inner / outer negation / Brian Medlin: e.g. paradox of motion - problem: to choose between the last moment of rest and the firstmoment of movement (two Dedekind cuts) - 1 "not in motion: or rrr rr (followed or led or both from rest) 2" it is not the case that x in motion, was not rbr - 3 x was in motion. : only bb or bbb - good example because there is no name without a bearer.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Medlin I
Brian Medlin
Iris Murdoch
Never Mind about the Bourgeoisie: The Correspondence Between Iris Murdoch and Brian Medlin 1976-1995 2014

EMD II
G. Evans/J. McDowell
Truth and Meaning Oxford 1977

Evans I
Gareth Evans
"The Causal Theory of Names", in: Proceedings of the Aristotelian Society, Suppl. Vol. 47 (1973) 187-208
In
Eigennamen, Ursula Wolf, Frankfurt/M. 1993

Evans II
Gareth Evans
"Semantic Structure and Logical Form"
In
Truth and Meaning, G. Evans/J. McDowell, Oxford 1976

Evans III
G. Evans
The Varieties of Reference (Clarendon Paperbacks) Oxford 1989


Send Link

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2020-09-26
Legal Notice   Contact   Data protection declaration