Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Quantification: is a function within the predicate logic, in which a property is attributed to an object yet to be determined. A) Existence quantification e.g. (Ex) (Fx) "At least one object x is F". It is assumed that the object denoted by x exists. B) Universal quantification (notation (x) ...) "For all x applies ...". Both forms of quantification can be negated, covering most of the everyday cases. In addition, a subject domain must be chosen, within which the statements that result from the insertion of objects are meaningful. See also existence, non-existence, existence assumption, existence predicate, universal quantification, existence quantification, domains, opacity, intensional objects.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
II 147
Quantification/quotes/Field: normal quantification does not allow the generalization of names that are both inside and outside of quotation marks - we need but for e.g. "each name that came up in the discussion of staffing, referred to a man". - ((s)> "Everything he said is true").


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Fie I
H. Field
Realism, Mathematics and Modality Oxford New York 1989

Fie II
H. Field
Truth and the Absence of Fact Oxford New York 2001

Fie III
H. Field
Science without numbers Princeton New Jersey 1980


Send Link
> Counter arguments against Field

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-11-24