Dictionary of Arguments


Philosophical and Scientific Issues in Dispute
 
[german]

Screenshot Tabelle Begriffes

 

Find counter arguments by entering NameVs… or …VsName.

Enhanced Search:
Search term 1: Author or Term Search term 2: Author or Term


together with


The author or concept searched is found in the following 3 entries.
Disputed term/author/ism Author
Entry
Reference
Mathematics Bergson Sokal I 206
Mathematik/Bergson/Bricmont/Sokal: SokalVsBergson: wir haben den Eindruck, dass es einen historischen Zusammenhang mit einer philosophischen Tradition gibt, die die Intuition oder die subjektive Erkenntnis über den Verstand stellt. Einer der brillantesten Vertreter dieser Denkweise ist zweifelsohne Bergson, der diesen Ansatz so weit trieb, dass er sogar mit Einstein über die Relativitätstheorie diskutierte.
Sokal I 207
Relativitätstheorie/Bergson/BergsonVsEinstein/SokalVsBergson: Bergson versucht nicht wirklich, das Neue in der Relativitätstheorie zu erkennen und daraus möglicherweise philosophische Schlussfolgerungen abzuleiten; vielmehr werden diese bereits zu Beginn aufgestellt und die gesamte Analyse zielt darauf ab zu zeigen, dass die physikalische Theorie si bestätigt (H. Bergson, Durée et simultanéité. Propos de la théorie d’Einstein, Paris, 1922(1968)). Sokal: Bergson hat nicht wenige Philosophen beeinflusst, über Jankélévitch und Merleau-Ponty bis hin zu Deleuze.
Sokal I 208
Wenn man den Aufwand betrachtet, mit dem herausragende Physiker wie Jean Becquerel, André Metz und Albert Einstein höchstpersönlich versucht haben, ihm die Relativitätstheorie zu erklären, ...lässt sich bei Bergson daher eine Unbeeinflussbarkeit durch empirische Argumente feststellen.
Sokal I 208
SokalVsBergson: seine Irrtümer sind ziemlich grundlegender Natur, immerhin verbreitet er keine falsche Gelehrsamkeit. Relativitätsprinzip/Galilei/Sokal: das Relativitätsprinzip war schon Galilei im Jahre 1632 bekannt.
Sokal I 211
BergsonVsEinstein: Bergson bestand darauf, dass „es unerheblich ist, ob eine Bewegung gleichförmig oder beschleunigt ist: beide Systeme sind gleichberechtigt zueinander, (Bergson 1922 (1968) S. 198). Bergson:… wenn nun jede (auch die beschleunigte) Bewegung relativ ist … steht es ihm frei zu definieren was er möchte….
SokalVsBergson: hier verwechselt Bergson zwei Dinge: die Beschreibung einer Bewegung (Kinematik) und die Gesetzmäßigkeiten, denen
Sokal I 209
diese Bewegung unterliegt (Dynamik). Es ist wohl richtig, zumindest für die Newtonsche Kinematik, dass die Transformationsformeln zwischen zwei Bezugssystemen vollkommen reziprok sind, selbst wenn beide Systeme sich in einer beschleunigten Bewegung zueinander befinden. Dennoch impliziert dies in keiner Weise, dass die Gesetze der Dynamik in Bezug auf die beiden Systeme die gleichen sind. Der Gedankengang Bergsons (S. 197) beruht auf einer elementaren Verwechslung zwischen einem Bezugssystem (etwa einem Zug in beschleunigter Bewegung) und der Bewegung von Objekten (z. B: Kugeln, die in dem fahrenden Zug auf dem Boden liegen) im Hinblick auf dieses Bezugssystem.

Bergs I
Henri Bergson
Durée et Simultanéité. À propos de la théorie d’Einstein, Paris 1922
German Edition:
Dauer und Gleichzeitigkeit: Über Einsteins Relativitätstheorie Hamburg 2014


Sokal I
Alan Sokal
Jean Bricmont
Fashionabel Nonsense. Postmodern Intellectuals Abuse of Science, New York 1998
German Edition:
Eleganter Unsinn. Wie die Denker der Postmoderne die Wissenschaften missbrauchen München 1999

Sokal II
Alan Sokal
Fashionable Nonsense: Postmodern Intellectuals’ Abuse of Science New York 1999
Relevance Einstein Genz II 314
Understanding/Einstein/Genz: (Interview with "The Listener"): I would like to know how God created the world. ~ The details are not very interesting. PauliVsEinstein: "Then I can paint like Rembrandt, only the details are missing."


Gz I
H. Genz
Gedankenexperimente Weinheim 1999

Gz II
Henning Genz
Wie die Naturgesetze Wirklichkeit schaffen. Über Physik und Realität München 2002
Theory of Relativity Bergson Sokal I 218
Relativitätstheorie/Bergson/Bricmont/Sokal: (H. Bergson, Durée et simultanéité. Propos de la théorie d’Einstein, Paris, 1922(1968)): BergsonVsEinstein: Bergson weist die Voraussage des Zwillingsparadoxons schlicht zurück. SokalVsBergson: Bergson macht die Sache komplizierter, indem er eine Unterscheidung zwischen biologischen „Uhren“, insbesondere solche mit Bewusstsein (etwa Menschen) und nichtbiologischen Uhren macht.
Sokal I 220
SokalVsBergson: Bergson behauptet fälschlich, die beiden Beobachter seien austauschbar. Der Reisende muss drei Beschleunigungs- (und Abbrems-) Manöver über sich ergehen lassen, während der sein Zwilling davon verschont bleibt. Ein weiterer Fehler ist es anzunehmen, dass das Zwillingsparadox aus der Allgemeinen Relativitätstheorie ableitbar sei. Diesen Fehler findet man sogar in manchen physikalischen Fachtexten.
Sokal I 221
SokalVsBergson: sein Fehler ist ein doppelter: a) er ist zu „relativistisch“ weil er fälschlich annimmt, die beiden Beobachter wären austauschbar – b) er ist zu wenig „relativistisch“, weil er sich weigert, der von den Beobachtern gemessenen Zeit die gleiche Objektivität zuzugestehen.

Bergs I
Henri Bergson
Durée et Simultanéité. À propos de la théorie d’Einstein, Paris 1922
German Edition:
Dauer und Gleichzeitigkeit: Über Einsteins Relativitätstheorie Hamburg 2014


Sokal I
Alan Sokal
Jean Bricmont
Fashionabel Nonsense. Postmodern Intellectuals Abuse of Science, New York 1998
German Edition:
Eleganter Unsinn. Wie die Denker der Postmoderne die Wissenschaften missbrauchen München 1999

Sokal II
Alan Sokal
Fashionable Nonsense: Postmodern Intellectuals’ Abuse of Science New York 1999

The author or concept searched is found in the following 7 controversies.
Disputed term/author/ism Author Vs Author
Entry
Reference
Bohr, N. Einstein Vs Bohr, N. J. Gribbin Auf der Suche nach Schrödingers Kätzchen, München, Zürich 1991
VII 195
EinsteinVsBohr/VsCopenhague Interpretation: Example: clock in a box that also contains radiation. The box now opens at an exact time determined by the clock and lets out a photon. Then the box is measured. Since the photon has no rest mass, but energy, one can thus measure time and energy exactly!
VII 196
BohrVsEinstein: the clock is suspended from a spring (for damping) but now the movement of the clock depends on the height above the center of gravity. The escape of the photon causes the spring to move.
VII 197
1. because of the weight change of the box, 2. because of the recoil! So the place is no longer fixable and also not the accuracy of the clock. (Einstein's own arguments from the relativity theory).
One could fix the box, but then it would be impossible to measure the change in mass.
VII 198
Einstein-Podolsky-Rosen/EPRVsBohr: the Copenhague interpretation is incomplete. There really is something like a clockwork in the universe. The world of particles is the objective reality, even if you do not observe it.
VII 199
For example, if two correlated particles fly apart, the other should not be disturbed when measuring one. This would allow us to measure both the location and the momentum of the distant particle against the uncertainty relation. Otherwise we would have to assume a "distant effect". Einstein: anything else would not be a "reasonable interpretation of reality". There was actually agreement on that, but not on what a "reasonable interpretation of reality" actually was!
Einstein-Podolsky-Rosen failed. Later proved by the experiment of Alain Aspect, 1982.
Einstein, A. Verschiedene Vs Einstein, A. Esfeld I 283
Hidden Parameters/David Bohm/Esfeld: best elaborated theory of hidden parameters. But compatible with holism. Although Bohm does not take a deterministic view of the world, his alternative to conventional quantum mechanics (QM) is deterministic.
Thesis: a quantum system (QS) always has a definite value of place. This value is the hidden parameter. Each quantum system therefore has a definite orbit that is causally determined. The behavior of the quantum system in the measurement is also causally determined. "Causal interpretation of quantum system".
Apart from the location, all other observables are context-dependent.
Regardless of the context of the measurement, the particle (Quantum System) has only a potential value of the observable.
Measurement/Bohm: updates the properties. E.g. the spin is acquired.
Properties/Quantum System/Bohm: should therefore be regarded as dispositional. (>Disposition). Independent of hidden parameters.
I 284
Quantum Mechanics/Bohm: Thesis: there is a potential or quantum field. It determines the path of a quantum system causally. The quantum potential (QP) is non-local. BohmVsEinstein: in contrast to the classic potential, the quantum potential does not need to become smaller with the spatial distance!
Bohm/Esfeld: violates the parameters independence (PI), while the conventional quantum mechanics violates the result independence (RI).
Quantum Potential: is a new kind of interaction (force), non-local interaction.
So a violation of the local effect.
I 285
Bohm/Esfeld: is this a rich holism? The quantum potential cannot be described in terms of pre-existing relationships between particles. It is not determined by the locations of the particles alone. It is therefore not sufficient for a philosophical locality condition such as Hume's supervenience (Lewis, see below).
on the other hand, Bohm identifies non-locality with indivisible wholeness and not separability.
Bohm ignores the distinction between non-separability and violating the local effect.
With the quantum potential, he introduces a new, non-local effect.
However, non-local interaction is not holism!
Holism/Bohm/Esfeld: in relation to holism, Bohm is at least ambiguous.
Hennig Genz Gedankenexperimente, Weinheim 1999
VIII 176
Clock-Experiment/BohrVsEinstein: 1. No completely rigid arrangement can serve as a scale. In general, every measuring instrument must be able to react to changes in the measured variable. This makes it an object which itself is subject to the uncertainty relation quantum mechanics.(> Measuring).
2. Each weighing (measurement) takes time. The more accurate it should be, the more time is needed.
N.B.: it is precisely the general relativity theory that Einstein refutes: the longer the measurement takes and the greater the variation in height of the system, the less precisely it determines the time at which the photon escaped.





Es I
M. Esfeld
Holismus Frankfurt/M 2002
Einstein, A. Feynman Vs Einstein, A. I 189
Gravitation Theory/Einstein: Thesis: accelerations are an imitation of gravity. Acceleration forces are pseudo-forces, they cannot be distinguished from gravitation. It is impossible to specify what portion stems from gravitation and which from the pseudo-forces.
VsEinstein: the antipodes are not accelerated!
EinsteinVsVs: Gravitation as a pseudo-force may only be considered at one point in each case. This leads to non-Euclidean geometry.

Feynman I
Richard Feynman
The Feynman Lectures on Physics. Vol. I, Mainly Mechanics, Radiation, and Heat, California Institute of Technology 1963
German Edition:
Vorlesungen über Physik I München 2001

Feynman II
R. Feynman
The Character of Physical Law, Cambridge, MA/London 1967
German Edition:
Vom Wesen physikalischer Gesetze München 1993
Einstein, A. Milne Vs Einstein, A. Kanitscheider I 214
MilneVsEinstein: Nachteil, dass die Gravitationstheorie nicht ein einziges Modell, sondern viele zulässt. Das zeigt einen falschen Ansatz der relativistischen Physik, der auf der Extrapolation der Laborphysik beruht.
I 215
Milne: These: wir sollten nicht von lokalen Gesetzen ausgehen und dann nach den Randbedingungen fragen, sondern von der Welt im Großen ausgehen und die lokalen Gesetze deduktiv gewinnen. (s.u.). Bei Milne tragen viele Züge der Welt Notwendigkeitscharakter. (Erschaffung der Welt!).
EinsteinVsMilne/Kanitscheider: würde sagen, dass nicht einzusehen ist, warum die von der lokalen Physik bewährte Methodologie scheitern soll, wonach der Theoretiker immer eine Vielzahl von möglichen Systemen entwirft, und dann eine Auswahl trifft.
Kanitscheider: letztlich ist Milne leichter falsifizierbar, weil man bei Einstein immer noch andere Modelle in petto hat, nach anderen Lösungen der Feldgleichungen.

Kanitsch I
B. Kanitscheider
Kosmologie Stuttgart 1991

Kanitsch II
B. Kanitscheider
Im Innern der Natur Darmstadt 1996
Einstein, A. Bell Vs Einstein, A. Henning Genz Gedankenexperimente, Weinheim 1999
VIII 88
BellVsEinstein/Information/Theorem/Genz: proved by him in 1964: perhaps something must occur faster than light, but certainly Einstein's concept of separation of space and time has to be abandoned by the speed of light. Example Suppose you flipped a coin and I was able to make it do an additional spin. You'll never know this, though, because you would not know whether the "original" result that would have been heads or tails. And I would not know it for the same reason, I would not know that I had the strength. ((s) in a particular case).
Quantum Mechanics Einstein Vs Quantum Mechanics Esfeld I 256
Incompleteness/Quantum Mechanics/QM/EinsteinVsQuantum Mechanics: For example, suppose two electrons are emitted from one source and move away with opposite spin in opposite directions. Overall state: singlet state.
Einstein/Podolsky/Rosen/EPR: if the result of a measurement of the location or momentum of one system is given, then we can predict with certainty the result of the measurement of the same observables of the other system. (without intervention)
I 257
Consequence: the quantum mechanics is incomplete. There is therefore an element of reality that corresponds to this physical quantity regardless of whether the second measurement is actually performed. This exists before the first measurement. The quantum mechanics is incomplete because it makes everything dependent on the measurement and therefore does not recognize this element.
To justify this one needs the two principles of separability and local effect.
Local Effect: to exclude that there is an interaction between the measurement on the first system and the reality on the second system.
Separability: to exclude that the determination of the local properties depends on something other than the state the system is in.
Einstein-Podolsky-RosenVsQuantum Mechanics: further conclusion: quantum systems simultaneously have a definite numerical value of two or more incompatible observables.
I 258
For example, an experimenter only decides clearly after the emission which observable he wants to measure. Separability and local effect imply that this decision is irrelevant.
Nevertheless, once the decision has been made, we can predict the value of the corresponding observable for the other system.
Einstein-Podolsky-Rosen: therefore the two systems must have a definite value of all observables between which the experimenter can choose.
Einstein did not consider this conclusion to be self-evident because it is based on the assumption of separability and the local effect.
I 271/272
Metaphysics/Science/Esfeld: Separability and local effect are metaphysical principles in the sense that they are a precise formulation of assumptions that are at the center of our everyday view of nature.
I 271/272
The question of whether quantum mechanics is complete also seems to be a metaphysical question. It depends on whether we underline separability and local effect as the foundation of science. Bell's inequality/Bell/Esfeld: Bell has eliminated the seemingly clear distinction between physics and metaphysics!
Metaphysics: Einstein's realism shows that metaphysics has predictable consequences that can be tested.
"Experimental Metaphysics"/Shimony: (Ferdinand Gonseth, 1948, Michele Besso, 1948): are similar to Quine's position: rejection of the separation between mathematics, science, and philosophy. Every element of our knowledge can be subject to revision.
I 273
Thesis: metaphysical questions cannot be decided by experiments! On the contrary: EinsteinVsQuantum Mechanics must be understood in the sense of the Quine-Duhem-Thesis: no separation between metaphysics and physics in quantum mechanics. For example, Bell's experiments can be seen as a test of two hypotheses, namely the conjunction of parameter independence and result independence.
But the point is: what you think is what the Bell experiments confirm or disprove depends on what background assumptions you base yourself on.
Hennig Genz Gedankenexperimente, Weinheim 1999
VIII 216
Einstein-Podolsky-RosenVsQuantum Mechanics/EPRVsQM/Genz: incompleteness of Quantum Mechanics: Spin has an element of reality. Since quantum mechanics can only consider one of these elements of reality, it is incomplete. Einstein-Podolsky-Rosen Argument/Version Bohm: For example, a part of it rests in the laboratory and decays in a time interval into an electron and a positron. (There is no such thing, but it does not matter). (In the real experiment (Aspect) photons were assumed).
If Gretel detects the electron, she can be sure that Hänsel has the positron.
From a quantum mechanical point of view, the particle pair is a single system.
VIII 216
The angular momentum of the particle decaying in its resting system is zero, since the conservation law applies to the angular momentum, it is also zero for the decay products. If, however, only the spins of the particles contribute to their total angular momentum, the law of conservation becomes a conservation law for the sum of the spins. Consequently, the two spins remain coupled. But now the coupling of the spins to the total spin zero guarantees more: that the sum of the settings of the spins in any direction is zero.
If the total spin were not zero, it could be that it is zero in x direction, but not in y direction.
VIII 217
Example Einstein-Podolsky-Rosen/Bohm: Problem: Gretel can align her star Gerlach apparatus as she wants. The alignment of the device determines which component of the spin of the entering particle should have a "sharp" value with spin 1/2. Hänsel and Gretel choose directions for x or y (perpendicular to the direction of propagation z). Since the two particles fly apart, the chirality is different!
Both now want to measure "transversal" spins perpendicular to the extension.
VIII 218
Gretel: measures in x direction plus or minus. If she turns the apparatus by 90°, she measures in y direction, again plus or minus. N.B.: Hänsel always measures the opposite. If Gretel has the apparatus in the same direction as Hänsel, she measures the opposite of his spin. If she now turns it in y direction, she has to measure the opposite again, even if Hänsel has not turned his apparatus.
Einstein-Podolsky-Rosen: now claim that Gretel can use it to determine Hänsel's spin in both the x and y directions without disturbing Hänsel's positron in any way.
Quantum MechanicsVsEinstein-Podolsky-Rosen: actually it is not the case according to quantum mechanics. Before the measurement it is pointless to speak of a state at all.
VIII 219
Bertlmann's Socks/Genz: are not particularly exciting. Corresponds to the "glove correlation": if I find one, I know that I have lost the other.
VIII 220
Quantum MechanicsVsEinstein-Podolsky-Rosen: also the spin operators of the positron do not exchange with each other, but a statement about the "sum" is valid: σxσy - σyσx = 2iσz.
Translated into the formalism of quantum mechanics, the conclusion of Einstein-Podolsky-Rosen is that the state |  > of the positron must be both an eigenstate of σx and of σy for certain eigenvalues mx and my.
But the quantum mechanics does not know such a state!
Unlike the product of operators, the product of eigenvalues is independent of the order!
0 = (mxmy - mymx) | ψ > = (σxσy - σyσx) | ψ > = 2iσz | ψ >,
so that | ψ > of σz would have to be destroyed (σy | ψ > = 0). But because σz, just like σx, and σy can have only 1 and -1 but not 0 as eigenvalue, there can be no such state!
But the contradiction is one between the formalism of quantum mechanics and the demands of Einstein-Podolsky-Rosen and none with experimentally verifiable statements.

Es I
M. Esfeld
Holismus Frankfurt/M 2002
Various Authors Maturana Vs Various Authors I 218
Theory / Einstein: free creations of the mind. For him it was a paradox: "How can we still understand the universe using such theories?" - MaturanaVsEinstein: There is no such paradox: instead objectivity in parentheses.

Maturana I
Umberto Maturana
Biologie der Realität Frankfurt 2000