Dictionary of Arguments


Philosophical and Scientific Issues in Dispute
 
[german]

Screenshot Tabelle Begriffes

 

Find counter arguments by entering NameVs… or …VsName.

Enhanced Search:
Search term 1: Author or Term Search term 2: Author or Term


together with


The author or concept searched is found in the following 3 entries.
Disputed term/author/ism Author
Entry
Reference
Constructivism Kanitscheider II 20
KanitscheiderVsConstructivism: Constructivism moves close to Fichte's absolute idealism, in which the I sets the world. 1. nature becomes fiction. However, at least the constructing cognitive faculty and its biological carrier must be presupposed as a starting point.
2nd problem: The epistemic status of illusions. In everyday life as well as in science we are able to weed out illusions.
Someone who relies on illusions does not live long. (Evolutionist argumentVsMaturana).
>Humberto Maturana.
II 21
Something seems to prevent us from creating arbitrary worlds. >Ontology, cf. >Possible worlds.

Kanitsch I
B. Kanitscheider
Kosmologie Stuttgart 1991

Kanitsch II
B. Kanitscheider
Im Innern der Natur Darmstadt 1996

Constructivism Schurz I 56
Constructive RealismVsRadical Constructivism/Schurz: Constructive Realism denies the ontological constructivism that reality itself is not given "in itself". However, the perceived result is the result of an active cognitive construction. Radical constructivism/Maturana: That, about which we can say something, is only the reality constructed by us.
SchurzVsMaturana/VsConstructivism: Kier the concept of "stating" is taken in a naive realist sense of reflection.
>Humberto Maturana, >Reality/Maturana.

Schu I
G. Schurz
Einführung in die Wissenschaftstheorie Darmstadt 2006

Real Numbers Dedekind Thiel I 192
Definition Dedekind's cuts/real numbers/Dedekind(1): I find (...) the essence in the continuity in the reversal, namely in the following principle: if all points of the line disintegrate into two classes in such a way that each point of the first class is to the left of every point of the second class, so one and only one point exists, which brings this division of all points into two classes. ConstructivismVsDedekind: since the mathematical means used in this provision are not explicitly mentioned, the requirement of constructivist basic critics remains unfulfilled to regard an abstract entity as "given" when a concrete expression representing it is given, so that abstract objects can ultimately be traced back to corresponding properties of the expressions expressing it.
>Constructivism, >Dedekind cuts.
VsConstructivism: Representatives of the "classical" point of view reject this as "too narrow," because the explicit statement of the means of expression used to define the Dedekind's cuts limits the range of definable real numbers.
"New" real figures can only be introduced by the extension of the means permitted at a certain stage and only to be justified.
I 192/193
This applies if we abandon the mixing of the arithmetic and the geometrical point of view in the speech of the "number line" (also used in the explanation of the Dedekind method) in favor of a clear separation. To speak of the totality of "all" real numbers and also of the totality of "all" points on a line or straight line.
Infinite/infinity/constructive: an infinite set is present if it can be enumerated by a generation process.
Weaker sense: a set of principles must be known.
Stronger meaning: The totality of the real numbers is not available. It is not a definite set. Classical analysis on real numbers presupposes a stronger view. Already in every statement about "all" real numbers, the totality is interpreted as being actual.
Cf. >Intuitionism.


1. Dedekind, R. (1872). Stetigkeit und irrationale Zahlen. Nachdruck 1965: Braunschweig: Vieweg.


T I
Chr. Thiel
Philosophie und Mathematik Darmstadt 1995

The author or concept searched is found in the following 6 controversies.
Disputed term/author/ism Author Vs Author
Entry
Reference
Constructivism Black Vs Constructivism III 75
Subjectivity/Objectivity/Science/Black: sometimes these components are not easy to separate, but that can lead to absurdity: (BlackVsConstructivism/BlackVsHoagland: Constructivism/Hudson/Hoagland: ("Some comments on Science and Faith" Conference on Science, Phil. and Faith, 2nd Sympos., (NY 1942 p. 35): Thesis: all knowledge of the universe or even of God comes to us through a series of complex physico-chemical events of the central nervous system (CNS). We do not perceive the properties of objects, but the properties of our own nervous system.
BlackVsHoagland: how can he ever know that the "physico-chemical events" are complex?

Black I
Max Black
"Meaning and Intention: An Examination of Grice’s Views", New Literary History 4, (1972-1973), pp. 257-279
In
Handlung, Kommunikation, Bedeutung, G. Meggle (Hg) Frankfurt/M 1979

Black II
M. Black
The Labyrinth of Language, New York/London 1978
German Edition:
Sprache. Eine Einführung in die Linguistik München 1973

Black III
M. Black
The Prevalence of Humbug Ithaca/London 1983

Black IV
Max Black
"The Semantic Definition of Truth", Analysis 8 (1948) pp. 49-63
In
Truth and Meaning, Paul Horwich Aldershot 1994
Constructivism Russell Vs Constructivism Quine IX 184
VsConstructivism/Construction/QuineVsRussell: we have seen how Russell's constructivist access to the real numbers failed (least upper bound (Kos), see above). He gave up the constructivism and took refuge in the reducibility axiom (RA). ---
IX 184/185
The way he gave it up, had something perverse in it: Reducibility axiom/QuineVsRussell: the reducibility axiom implies that all the distinctions that gave rise to its creation, are superfluous.
When Russell's system is consistent with reducibility axioms, then no contradictions will arise if we ignore all orders except the predicative.
We can determine that the order of each attribute is always the next highest in comparison to the order of things that have this attribute, according to intensional relations.
If somehow an attribute of the order n + k is referred to, which is an attribute of objects of the order n, so we need this name only as such, which is based on a systematic reinterpretation that refers to an attribute of the order n + 1 with the same extension. According to intensional relations.
Reducibility Axiom: tells us that an equal-extensional attribute or equal-extensional intensional relation of the desired order, and namely in predicative execution, always exists.
Is the axiom planned from the outset, so you should avoid its necessity in that we speak in the beginning only of types of attributes instead of orders of any distinctive sense.
Orders are only excusable if one wants to maintain a weak constructive theory without reducibility axiom.
((s)Axiom/Quine/(s): should not be taken as necessary)

Russell I
B. Russell/A.N. Whitehead
Principia Mathematica Frankfurt 1986

Russell II
B. Russell
The ABC of Relativity, London 1958, 1969
German Edition:
Das ABC der Relativitätstheorie Frankfurt 1989

Russell IV
B. Russell
The Problems of Philosophy, Oxford 1912
German Edition:
Probleme der Philosophie Frankfurt 1967

Russell VI
B. Russell
"The Philosophy of Logical Atomism", in: B. Russell, Logic and KNowledge, ed. R. Ch. Marsh, London 1956, pp. 200-202
German Edition:
Die Philosophie des logischen Atomismus
In
Eigennamen, U. Wolf (Hg) Frankfurt 1993

Russell VII
B. Russell
On the Nature of Truth and Falsehood, in: B. Russell, The Problems of Philosophy, Oxford 1912 - Dt. "Wahrheit und Falschheit"
In
Wahrheitstheorien, G. Skirbekk (Hg) Frankfurt 1996

Quine I
W.V.O. Quine
Word and Object, Cambridge/MA 1960
German Edition:
Wort und Gegenstand Stuttgart 1980

Quine II
W.V.O. Quine
Theories and Things, Cambridge/MA 1986
German Edition:
Theorien und Dinge Frankfurt 1985

Quine III
W.V.O. Quine
Methods of Logic, 4th edition Cambridge/MA 1982
German Edition:
Grundzüge der Logik Frankfurt 1978

Quine V
W.V.O. Quine
The Roots of Reference, La Salle/Illinois 1974
German Edition:
Die Wurzeln der Referenz Frankfurt 1989

Quine VI
W.V.O. Quine
Pursuit of Truth, Cambridge/MA 1992
German Edition:
Unterwegs zur Wahrheit Paderborn 1995

Quine VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Quine VII (a)
W. V. A. Quine
On what there is
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (b)
W. V. A. Quine
Two dogmas of empiricism
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (c)
W. V. A. Quine
The problem of meaning in linguistics
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (d)
W. V. A. Quine
Identity, ostension and hypostasis
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (e)
W. V. A. Quine
New foundations for mathematical logic
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (f)
W. V. A. Quine
Logic and the reification of universals
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (g)
W. V. A. Quine
Notes on the theory of reference
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (h)
W. V. A. Quine
Reference and modality
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (i)
W. V. A. Quine
Meaning and existential inference
In
From a Logical Point of View, Cambridge, MA 1953

Quine VIII
W.V.O. Quine
Designation and Existence, in: The Journal of Philosophy 36 (1939)
German Edition:
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg) München 1982

Quine IX
W.V.O. Quine
Set Theory and its Logic, Cambridge/MA 1963
German Edition:
Mengenlehre und ihre Logik Wiesbaden 1967

Quine X
W.V.O. Quine
The Philosophy of Logic, Cambridge/MA 1970, 1986
German Edition:
Philosophie der Logik Bamberg 2005

Quine XII
W.V.O. Quine
Ontological Relativity and Other Essays, New York 1969
German Edition:
Ontologische Relativität Frankfurt 2003

Quine XIII
Willard Van Orman Quine
Quiddities Cambridge/London 1987
Constructivism Verschiedene Vs Constructivism Barrow I 65/66
Constructivism: Founder Leopold Kronecker: "The whole numbers were made by God, everything else is human work." The meaning of a mathematical formula lies only in the chain of operations with which it is constructed. Constructivism introduces a third status: undecided! A statement that cannot be decided in a finite number of steps comes into the junk chamber of undecidedness.
I 67
VsConstructivism: before constructivism, mathematics had developed all possible methods of proof which are not feasible in a finite number of steps. Def Reductio ad absurdum/raa: evidence which assumes that something is wrong in order to prove its indispensability, in that a contradiction arises from the very assumption of falsity.
I 68
BrouwerVsHilbert: (Einstein: the "war of frogs and mice" also >"frog mouse war") Hilbert prevailed: The board of editors of the joint newspaper "Mathematische Annalen" was dissolved and refounded without Brouwer.
I 69
Constructivism: strange anthropocentrism: BarrowVsConstructivism: the idea of a universal human intuition of the natural numbers cannot be kept historically (see above). A constructivist cannot say whether the intuition of a human being is the same as that of another, nor whether such an intuition will develop further in the future.





B I
John D. Barrow
Warum die Welt mathematisch ist Frankfurt/M. 1996

B II
John D. Barrow
The World Within the World, Oxford/New York 1988
German Edition:
Die Natur der Natur: Wissen an den Grenzen von Raum und Zeit Heidelberg 1993

B III
John D. Barrow
Impossibility. The Limits of Science and the Science of Limits, Oxford/New York 1998
German Edition:
Die Entdeckung des Unmöglichen. Forschung an den Grenzen des Wissens Heidelberg 2001
Constructivism Schurz Vs Constructivism I 56
Constructive RealismVsRadical Constructivism/Schurz: bestreitet den ontologischen constructivism, dass die Wirklichkeit selbst nicht "an sich" gegeben sei. Wohl aber ist das wahrgenommene Ergebnis das Ergebnis einer aktiven kognitiven Konstruktion. Radical Constructivism/Maturana: das, worüber wir etwas aussagen können, ist nur die von uns konstruierte Wirklichkeit
SchurzVsMaturana/VsConstructivismc: hier wird der Begriff des "Aussagens" in naiv realistischem Widerspiegelungssinn aufgefasst.

Schu I
G. Schurz
Einführung in die Wissenschaftstheorie Darmstadt 2006
Dedekind, R. Constructivism Vs Dedekind, R. Thiel I 192
Def Dedekindsche Schnitte/reelle Zahlen/Dedekind: ich finde nun das Wesen der Stetigkeit in der Umkehrung, also im folgenden Prinzip: Zerfallen alle Punkte der Geraden in zwei Klassen derart, dass jeder Punkt der ersten Klasse links von jedem Punkt der zweiten Klasse liegt, so existiert ein und nur ein Punkt, der diese Einteilung aller Punkte in zwei Klassen hervorbringt. ConstructivismVsDedekind: da die in dieser Bestimmung verwendeten mathematischen Mittel nicht explizit genannt werden, bleibt die Forderung der konstruktivistischen Grundlagenkritiker unerfüllt,
eine abstrakte Entität erst dann als "gegeben" zu betrachten, wenn ein sie darstellender konkreter Ausdruck angegeben wird, so dass sich alle von dem abstrakten Gegenstand behaupteten Eigenschaften letztlich auf entsprechende Eigenschaften der ihn darstellenden Ausdrücke zurückführen lassen.
VsConstructivism: Vertreter des "klassischen" Standpunkts weisen das als "zu eng" zurück, weil die explizite Angabe der zur Definition der Dedekindschen Schnitte verwendeten Ausdrucksmittel den Bereich der definierbaren reellen Zahlen einschränkt.
"Neue" reelle Zahlen können erst durch Erweiterung der auf einer bestimmten Stufe zugelassenen und erst zu rechtfertigenden Mittel eingeführt werden.
I 192/193
Dies gilt, wenn wir die Vermischung des arithmetischen und des geometrischen Gesichtspunktes in der Rede von der "Zahlengeraden" (auch bei der Erläuterung des Dedekindschen Verfahrens verwendet) zugunsten einer klaren Trennung aufgeben. Um von der Gesamtheit "aller" reellen Zahlen und auch von der Gesamtheit "aller" Punkte auf einer Strecke oder Geraden sprechen.
unendlich/Unendlichkeit/konstruktiv: eine unendliche Gesamtheit liegt vor, wenn sie durch einen Erzeugungsprozess aufzählbar ist. .
Schwächerer Sinn: Reihe von Prinzipien muss bekannt sein.
Stärkerer Sinn: Gesamtheit der reellen Zahlen liegt nicht vor. Sie ist keine definite Menge. Die klassische Analysis über reelle Zahlen setzt die stärkere Auffassung voraus. Schon in jeder Aussage über "alle" reellen Zahlen wird die Gesamtheit als aktual gegeben aufgefasst.

T I
Chr. Thiel
Philosophie und Mathematik Darmstadt 1995
Maturana, H. Verschiedene Vs Maturana, H. Kanitscheider II 21
KanitscheiderVsConstructivism/VsMaturana: moves closer to Fichte's absolute idealism, in which the ego sets the world. 1 Nature becomes fiction. As a starting point, however, at least the constructing cognitive faculty and its biological carrier must be assumed.
2. Problem: the epistemic status of illusions. Both in everyday life and in science we are able to eliminate deceptions.
Someone who invokes illusions does not live long. (Evolutionist ArgumentVsMaturana).
Something seems to prevent us from creating arbitrary worlds.
Reality/Kanitscheider: as explanation for success and failure we accept the resistance of an autonomous reality. (PutnamVs).
BiologistsVsMaturana: what do we gain if we still call the known chemical processes autopoiesis? (Luhmann Kass.5).





Kanitsch I
B. Kanitscheider
Kosmologie Stuttgart 1991

Kanitsch II
B. Kanitscheider
Im Innern der Natur Darmstadt 1996