## Philosophy Lexicon of Arguments | |||

| |||

Universal generalization, logic: under the condition that an arbitrarily chosen object x has a certain property F, one can conclude that every object has the property F. Logical form I-a > b -> I-a > (a)b. Explanation If a formula a states something about an individual a (which can be x, y ...), and b follows from a, then b is also valid for all individuals mentioned in a by a. (See Hughes/Cresswell, 1978, p. 121). The universal generalization allows to introduce a universal quantifier. See also universal instantiation, existential generalization._____________ Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||

Author | Item | More concepts for author | |
---|---|---|---|

Lewis, David | Universal Generalization | Lewis, David | |

Nozick, Robert | Universal Generalization | Nozick, Robert | |

Ed. Martin Schulz, access date 2017-11-25 |