Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Space, philosophy: various discussions deal, among others, with the question whether the space is absolute or whether empty space is possible. In different sciences, multi-dimensional spaces with certain properties are used to better calculate like Hilbert spaces in the theory of relativity or multidimensional spaces in mathematical nodal theory. No ontological assumptions are made. See also substantivalism, relativism, movement, absoluteness, compactness, conceptual space, dimensions, logical space, four-dimensionalism.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.
 
Author Item    More concepts for author
Baudrillard, Jean Space   Baudrillard, Jean
Bennett, Jonathan Space   Bennett, Jonathan
Bigelow, John Space   Bigelow, John
Carnap, Rudolf Space   Carnap, Rudolf
Esfeld, Michael Space   Esfeld, Michael
Field, Hartry Space   Field, Hartry
Flusser, Vilem Space   Flusser, Vilem
Gärdenfors, Peter Space   Gärdenfors, Peter
Geach, Peter T. Space   Geach, Peter T.
Hobbes, Thomas Space   Hobbes, Thomas
Hume, David Space   Hume, David
Kant, Immanuel Space   Kant, Immanuel
Leibniz, G.W. Space   Leibniz, G.W.
Lessig, Lawrence Space   Lessig, Lawrence
Locke, John Space   Locke, John
Lorenz, Konrad Space   Lorenz, Konrad
Maturana, Humberto Space   Maturana, Humberto
McGinn, Colin Space   McGinn, Colin
Newton, Isaac Space   Newton, Isaac
Proust, Joelle Space   Proust, Joelle
Russell, Bertrand Space   Russell, Bertrand
Schopenhauer, Arthur Space   Schopenhauer, Arthur
Searle, John R. Space   Searle, John R.
Strawson, Peter F. Space   Strawson, Peter F.
Tugendhat, E. Space   Tugendhat, E.
Virilio, Paul Space   Virilio, Paul
Wessel, H. Space   Wessel, H.
Wittgenstein, Ludwig Space   Wittgenstein, Ludwig

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Ed. Martin Schulz, access date 2018-02-18