Economics Dictionary of ArgumentsHome
| |||
|
| |||
| Universals - Economics Dictionary of Arguments | |||
| Universals: Universals are expressions for what objects can have in common, such as a particular color. Examples of universals are redness, roundness, value. The ontological status of universals as something independent of thought - that is, their existence - is controversial. What is undisputed is that we form terms to generalize and use them successfully. See also General terms, Generality, Generalization, Ontology, Existence, Conceptual realism, Realism, Ideas, Methexis, Sortals, Conceptualism, Nominalism._____________Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||
| Author | Item | More concepts for author | |
|---|---|---|---|
| Armstrong, David M. | Universals | Armstrong, David M. | |
| Bigelow, John | Universals | Bigelow, John | |
| Brandom, Robert | Universals | Brandom, Robert | |
| Cavell, Stanley | Universals | Cavell, Stanley | |
| Chisholm, Roderick | Universals | Chisholm, Roderick | |
| Chomsky, Noam | Universals | Chomsky, Noam | |
| Deacon, Terrence W. | Universals | Deacon, Terrence W. | |
| Forrest, Peter | Universals | Forrest, Peter | |
| Kripke, Saul A. | Universals | Kripke, Saul A. | |
| Lewis, David K. | Universals | Lewis, David K. | |
| Martin, Charles B. | Universals | Martin, Charles B. | |
| Meixner, Uwe | Universals | Meixner, Uwe | |
| Millikan, Ruth | Universals | Millikan, Ruth | |
| Place, Ullin Thomas | Universals | Place, Ullin Thomas | |
| Quine, W.V.O. | Universals | Quine, Willard Van Orman | |
| Russell, Bertrand | Universals | Russell, Bertrand | |
| Schiffer, Stephen | Universals | Schiffer, Stephen | |
| Searle, John R. | Universals | Searle, John R. | |
| Strawson, Peter F. | Universals | Strawson, Peter F. | |
|
Authors A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Concepts A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ed. Martin Schulz, access date 2025-11-11 | |||