Economics Dictionary of Arguments

Home Screenshot Tabelle Begriffe



 Truth Predicate - Economics Dictionary of Arguments
 
Truth Predicate: the truth predicate of a language is the "is true" expressed in this language. Its allowance can be empirically justified or attributed to the statement on the basis of the logical form. According to the redundancy theory, the truth-predicate is fundamentally superfluous. According to W.V.O. Quine (Quine, Philosophie der Logik, 2005, p. 33), the truth predicate is merely used for generalization. For example, all sentences of a particular form are true. A language containing its own truth-predicate is semantically closed. In such a language, semantic paradoxes are possible. See also expressiveness, circularity, semantic closeness, truth, truth definition, redundancy theory, self-reference, paradoxes.
_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.
 
Author Item    More concepts for author
Austin, J.L. Truth Predicate   Austin, J.L.
Cresswell, Maxwell J. Truth Predicate   Cresswell, Maxwell J.
Davidson, Donald Truth Predicate   Davidson, Donald
Dummett, Michael E. Truth Predicate   Dummett, Michael E.
Field, Hartry Truth Predicate   Field, Hartry
Foster, J.A. Truth Predicate   Foster, J.A.
Grover, D. L. Truth Predicate   Grover, D. L.
Kripke, Saul A. Truth Predicate   Kripke, Saul A.
Logic Texts Truth Predicate   Logic Texts
Putnam, Hilary Truth Predicate   Putnam, Hilary
Quine, W.V.O. Truth Predicate   Quine, Willard Van Orman
Rorty, Richard Truth Predicate   Rorty, Richard
Soames, Scott Truth Predicate   Soames, Scott
Tarski, Alfred Truth Predicate   Tarski, Alfred
Thomson, James F. Truth Predicate   Thomson, James F.
Wright, Crispin Truth Predicate   Wright, Crispin

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Ed. Martin Schulz, access date 2024-12-08