Philosophy Dictionary of Arguments

Home

Screenshot Tabelle Begriffe

 
Space, philosophy: various discussions deal, among others, with the question whether the space is absolute or whether empty space is possible. In different sciences, multi-dimensional spaces with certain properties are used to better calculate like Hilbert spaces in the theory of relativity or multidimensional spaces in mathematical nodal theory. No ontological assumptions are made. See also substantivalism, relativism, movement, absoluteness, compactness, conceptual space, dimensions, logical space, four-dimensionalism.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
Gärdenfors I 145
Space/Language/Lakoff/Gärdenfors: (Lakoff 1987, p. 283): Thesis: in cognitive linguistics, the spatial structure of the image (image schema) can be used to explain the meaning of linguistic expressions.
Spatialization of form/Lakoff: we need spatial image schemas plus metaphorical images. For example, the use of many spatial prepositions is understood as metaphorical when transferred to other areas. ((s) StrawsonVsGärdenfors/StrawsonVsLakoff: Vs Spatialization of terms/FregeVsGärdenfors/FregeVsLakoff: Vs Spatialization of terms).


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Gä I
P. Gärdenfors
The Geometry of Meaning Cambridge 2014


Send Link
> Counter arguments against Gärdenfors

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2020-02-25
Legal Notice   Contact   Data protection declaration