Philosophy Lexicon of Arguments

 
Author Item Excerpt Meta data

 
Books on Amazon
Thiel I 225
Arithmetik/Lorenzen/Thiel: die Arithmetik ist die Theorie in der das Unendliche in seiner einfachsten Form auftritt, sie ist im Wesentlichen nichts anderes als die Theorie des Unendlichen selbst.
Die Arithmetik als Theorie der Zeichenmenge (z.B. Strichliste) ist in dem Sinne universell, als in ihr die Eigenschaften und Relationen jeder anderen unendlichen Zeichenmenge stets auf irgendeine Weise "abgebildet" werden können.
Die Komplexität der Materie hat dazu geführt, dass ein Großteil der Sekundärliteratur zu Gödel auf Metaphern wie "Spiegelung" "Selbstrückbezüglichkeit" usw. eine Menge Unsinn in die Welt gesetzt hat.
I 224
Der logisch arithmetische Vollformalismus wird mit F bezeichnet. Er enthält u.a. induktive Definitionen der Zählzeichen, der Variablen für sie, die Regeln der Quantorenlogik und die als Regeln geschriebenen Dedekind-Peanoschen Axiome.
I 226
Die Ableitbarkeit oder Unableitbarkeit einer Formel bedeutet nichts anderes, als Existenz bzw. Nichtexistenz einer Beweisfigur oder eines Stammbaums mit A als Endformel.
Deshalb entsprechen auch die metamathematischen Aussagen "ableitbar", bzw. "unableitbar" jeweils umkehrbar eindeutig einer sie charakterisierenden Grundzahl. > Unvollständigkeitssatz > Gödel.
Terminologie/Schreibweise: S ableitbar, $ nicht ableitbar.
"$ Ax(x)" ist nun zweifellos eine korrekt definierte Aussageform, da die Abzählung bei An(n) eindeutig bestimmt ist. Entweder gilt $An(n) oder nicht.
- - -
Thiel I 304
Die jahrhundertealte Dominanz der Geometrie hat Nachwirkungen im Sprachgebrauch. Bsp "quadratische", "kubische" Gleichungen usw.
Arithmetik/Thiel: ist heute zur Zahlentheorie geworden, ihr praktischer Teil zu "Rechnen" degradiert, Wahrscheinlichkeitsrechnung ist hinzugekommen.
I 305
In der Vektor und Tensorrechnung erscheinen Geometrie und Algebra wiedervereinigt.
Eine neue Disziplin namens "Invariantentheorie" kommt auf, floriert und verschwindet völlig, um wiederum später abermals wiederaufzuerstehen.
I 306
Funktionenanalysis: taugt wegen des sehr hohen Niveaus der begrifflichen Abstraktion sicher nicht zur Fundamentaldisziplin.
I 307
Bourbaki stellt den klassischen "Disziplinen" die "modernen Strukturen" gegenüber. Die Theorie der Primzahlen ist der Theorie der algebraischen Kurven eng benachbart. Die Euklidische Geometrie grenzt an die Theorie der Integralgleichungen. Das Ordnungsprinzip wird eins der Hierarchie der Strukturen sein, die von einfachen zum Komplizierten und von Allgemeinen zum Besonderen geht.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

T I
Chr. Thiel
Philosophie und Mathematik Darmstadt 1995


Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-20