Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

Ordinal numbers: ordinals indicate the position of elements within a sequence (expressed by "first", "second", ...). In contrast, cardinal numbers (expressed by "one," two ", ...) indicate the size (cardinality) of sets. See also numbers, sets, order, well-ordering.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Item Summary Meta data

Books on Amazon:
Bertrand Russell

Bertrand Russell Die Mathematik und die Metaphysiker 1901 in: Kursbuch 8 Mathematik 1967

Ordinal numbers: result from counting. Objects can only be counted when some come first, and others come afterwards.

Cardinal numbers: they are the basic numbers of the infinite numbers (not the ordinal numbers). They are not obtained by sorting and counting, but by a different method, which, if necessary, shows whether a quantity is bigger.
This method does not say in the same way as counting how many elements a set has! Each element is linked to a number in pairs. Thus, infinite sets are defined numerically.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

B. Russell/A.N. Whitehead
Principia Mathematica Frankfurt 1986

B. Russell
Das ABC der Relativitätstheorie Frankfurt 1989

B. Russell
Probleme der Philosophie Frankfurt 1967

B. Russell
Die Philosophie des logischen Atomismus
Eigennamen, U. Wolf (Hg), Frankfurt 1993

B. Russell
Wahrheit und Falschheit
Wahrheitstheorien, G. Skirbekk (Hg), Frankfurt 1996

Send Link
> Counter arguments against Russell

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   P   Q   R   S   T   U   V   W   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
Ed. Martin Schulz, access date 2018-04-24