Dictionary of Arguments

Screenshot Tabelle Begriffe

 
Infinity, infinite, philosophy: infinity is a result of a not stopping procedure, e.g. counting or dividing, or e.g. the continued description of a circular motion. In life-related contexts, infinitely continuous processes, e.g. infinite repetition, or never ending waiting are at least logically not contradictory. A construction rule does not have to exist to give an infinite continuation, such as e.g. in the development of the decimal places of real numbers. See also boundaries, infinity axiom, repetition, finitism, numbers, complex/complexity.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
Berka I 266
"Over-countable"/infinite/LorenzenVsSet theory: fable realm of the "Over-Countable". ((s) is not constructible, > constructivism).
Berka I 272
Infinite/premisses/dialogical logic/Lorenzen: one can state a step number l
e0 = ω exp ω exp ω exp...

P can thus first calculate an ordinal number I The statement forms that are used in the consistency proof are generally not recursive.(1)


1. P. Lorenzen, Ein dialogisches Konstruktivitätskriterium, in: Infinitistic Methods, (1961), 193-200


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Lorn I
P. Lorenzen
Constructive Philosophy Cambridge 1987

Berka I
Karel Berka
Lothar Kreiser
Logik Texte Berlin 1983


Send Link
> Counter arguments against Lorenzen

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2018-11-15
Legal Notice   Contact   Data protection declaration