Philosophy Lexicon of Arguments

Author Item Excerpt Meta data

Books on Amazon
Berka I 295
Definition continuum hypothesis/Cantor/Berka: (Cantor, 1884): if an infinite set of real numbers is not countable, then it is equal to the set of real numbers R itself.
The term "continuum hypothesis" emerged later.
Gödel: (1938) Gödel proved the relative consistency in the continuity hypothesis.
Independence/Cohen: (1963, 64): Cohen proved that the negation of continuum hypothesis is also consistent with the axioms of set theory, that is, he proved the independence of the continuum hypothesis from the set theory.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Brk I
K. Berka/L. Kreiser
Logik Texte Berlin 1983

> Counter arguments against Hilbert

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
Ed. Martin Schulz, access date 2017-06-28