Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Set Theory: set theory is the system of rules and axioms, which regulates the formation of sets. The elements are exclusively numbers. Sets contain individual objects, that is, numbers as elements. Furthermore, sets contain sub-sets, that is, again sets of elements. The set of all sub-sets of a set is called the power set. Each set contains the empty set as a subset, but not as an element. The size of sets is called the cardinality. Sets containing the same elements are identical. See also comprehension, comprehension axiom, selection axiom, infinity axiom, couple set axiom, extensionality principle.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
Thiel I 308
Mengenlehre: bei Bourbaki wird nie von Logizismus, immer nur von Mengenlehre gesprochen. Mengen sind genuin mathematische Gegenstände, nicht auf andere reduzierbar (Logik: Klassen). Mengenbegriff wesentliches Werkzeug zur Vereinheitlichung der Mathematik.

I 308/309
Mengenlehre: als Fundamentaldisziplin der Mathematik: Grundbegriffe wie Relation und Funktion werden auf den Begriff der Menge zurückgeführt, und zwar durch explizite Definition.
Relation als symmetrische oder asymmetrische Paarbildung zweistellige Relation. Manchmal brauchen wir Mittel, die Reihenfolge auszudrücken. Geordnete Paare. Def I 310.
Funktionen: def: rechtseindeutige Relationen. I 310.

Wenn man die Zurückführbarkeit aller höheren Zahlenarten auf die natürlichen Zahlen einmal voraussetzt, kann man auch diese noch mengentheoretisch gewinnen.

I 311
Die eigentliche Frage ist eine philosophische und betrifft die Berechtigung des hinter allem stehenden reduktionistischen Programms.

Thiel: ob auch noch Zahlen als mathematische Entitäten sich als Mengen erweisen, erscheint heute trotz aller logischen Sackgassen in die der klassische logizistische Ansatz geraten ist, immer noch eine der wichtigsten philosophischen Fragen.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

T I
Chr. Thiel
Philosophie und Mathematik Darmstadt 1995


Send Link
> Counter arguments in relation to Set Theory

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-10-17