Dictionary of Arguments

Screenshot Tabelle Begriffe

 
Logical constants: logical constants are also called logical particles or connectives, they are e.g. “and”; “or”; “if”; “then”; “not”. The expression constant is used, because the meaning of the logical links cannot change also in the translation into other languages, but always remains. For example, if one was to try to replace "and" with "or" in the case of a translation, mistakes would arise which could be determined, even if the vocabulary of the foreign language is not entirely known.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
I 468
Truth-Definition/logische constants/Tarski/Soames: Tarski himself said that his concept of truth can not be used to give the meanings of the logical constants. - Circumstances: the T-Def says nothing about the assertibility conditions under which a sentence can be asserted.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Soames I
Scott Soames
"What is a Theory of Truth?", The Journal of Philosophy 81 (1984), pp. 411-29
In
Theories of Truth, Paul Horwich, Aldershot 1994

Soames II
S. Soames
Understanding Truth Oxford 1999


Send Link
> Counter arguments against Soames
> Counter arguments in relation to Logical Constants

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2019-05-22
Legal Notice   Contact   Data protection declaration