Philosophy Lexicon of Arguments

Search  
 
Author Item Excerpt Meta data

 
Books on Amazon
Waismann I 70
Induction/Brouwer/Poincaré/Waismann: the power of induction: it is not a conclusion that carries to infinity. The set a + b = b + a is not an abbreviation for infinitely many individual equations, as well as 0.333 ... is not an abbreviation, and the inductive proof is not the abbreviation for infinitely many syllogisms (VsPoincaré).

In fact, we begin with the formulation of the formulas

a+b = b+a
a+(b+c) = (a+b)+c

a whole new calculus, which cannot be inferred from the calculations of arithmetic in any way. But:

Principle/Induction/Calculus/Definition/Poincaré/Waismann: ... this is the correct thing in Poincaré's assertion that the principle of induction cannot be proved logically. VsPoincaré: But he does not represent, as he thought, a synthetic judgment a priori; it is not a truth at all, but a determination: If the formula f(x) applies for x = 1, and f(c + 1) follows from f(c), let us say that "the formula f(x) is proved for all natural numbers".

Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976


> Counter arguments against Poincaré



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-05-23