Philosophy Lexicon of Arguments

 
Consistency, philosophy, logic: The expression of consistency is applied to systems or sets of statements. From a contradictory system any statement can be derived (see ex falso quodlibet). Therefore, contradictory systems are basically useless. It is characteristic of a consistent system that not every statement can be proved within it. See also systems, provability, proofs, calculus, consistency, theories, completeness, validity, expressiveness. Within a system, consistency may be demonstrated, but not beyond the boundaries of this system, since the use of the symbols and the set of possible objects are only defined for this system. Within mathematics, and only there applies that the mathematical objects, which are mentioned in consistent formulas, exist (Hilbert, Über das Unendliche, 1926). See also falsification, verification, existence, well-formed.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
I 269
Consistency/Law of Consistency/Millikan: consistency is then a template of an abstract world structure or something that is sufficient for such a template.
---
I 283
Consistency/Millikan: consistency is basically a law of ontology. (See, for example, an object must not contain any contradictory properties in itself) (See time, timely identitiy).


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Millk I
R. G. Millikan
Language, Thought, and Other Biological Categories: New Foundations for Realism Cambridge 1987


> Counter arguments against Millikan
> Counter arguments in relation to Consistency ...

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-24