Philosophy Lexicon of Arguments

 
Truth-functions: truth-functions map truth-values onto other truth-values. In two-valued logic, the two available truth values are "true" or "false" (t/f). The disjunction (A or B) now maps (t or t), (t or f) and (f or t) onto t, and (f or f) onto f. Non-truth-functional semantics differ from truth-functional semantics in that they also take other meanings of the logical links ("and", "or", "if then") into account, for example, expressions such as "nevertheless," "though," "still", whose propositional content corresponds to the "and", but which bring a certain additional expressive force into play. See also truth-functional semantics, truth-conditional semantics, semantics, propositional content.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
Berka I 142
Wahrheitsfunktionen/AK/Bivalenz/Funktor/Lukasiewicz: in einem zweiwertigen System können nur vier verschiedene Funktionen mit einem Argument gebildet werden - und zwar, wenn j einen Funktor mit einem Argument bildet, dann können folgende Fälle vorkommen: - (1) j0 = 0 und j1 = 0 ( "Fp" (falsum, falsch) - (2) j0 = 0 und j1 = 1 (jp ist mit p äquivalent) - (3) j0 = 1 und j1 0 = : (Negation) - (4) j0 = 1 und j1 = 1: "Vp" (verum, wahr) - Möglichkeit/Pointe: das "Mp" muß mit einem dieser vier Fälle identisch sein - Problem: eine jede der Thesen (1),(2), und (18) schließt nun gewisse Fälle aus


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Brk I
K. Berka/L. Kreiser
Logik Texte Berlin 1983


Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-20