(1)
">

Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Infinity Axiom: The infinity axiom is an axiom of set theory, which ensures that there are infinite sets. It is formulated in e.g. such a way that a construction rule is specified for the occurrence of elements of a described set. If {x} is the successor of x, the continuation is formed by the union x U {x}. See also set theory, successor, unification, axioms.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
Berka I 367
Axiom of infinity/Gödel: can be formulated as follows: "There is exactly a countable number of individuals".(1)


1. K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Mh. Math. Phys. 38 (1931) 175-198


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Göd II
Kurt Gödel
Collected Works: Volume II: Publications 1938-1974 Oxford 1990

Berka I
Karel Berka
Lothar Kreiser
Logik Texte Berlin 1983


Send Link
> Counter arguments against Gödel

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2020-05-28
Legal Notice   Contact   Data protection declaration