Dictionary of Arguments

Screenshot Tabelle Begriffe

 
Infinity, infinite, philosophy: infinity is a result of a not stopping procedure, e.g. counting or dividing, or e.g. the continued description of a circular motion. In life-related contexts, infinitely continuous processes, e.g. infinite repetition, or never ending waiting are at least logically not contradictory. A construction rule does not have to exist to give an infinite continuation, such as e.g. in the development of the decimal places of real numbers. See also boundaries, infinity axiom, repetition, finitism, numbers, complex/complexity.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
I 446
Finiteness/infinity/Foucault: a finiteness without infinite is undoubtedly a finiteness which is never finished and which is always in proportion to itself, which always has time to think again of what it has thought.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Foucault I
M. Foucault
Les mots et les choses: Une archéologie des sciences humaines , Paris 1966 - The Order of Things: An Archaeology of the Human Sciences, New York 1970
German Edition:
Die Ordnung der Dinge. Eine Archäologie der Humanwissenschaften Frankfurt/M. 1994

Foucault II
Michel Foucault
l’Archéologie du savoir, Paris 1969
German Edition:
Archäologie des Wissens Frankfurt/M. 1981


Send Link
> Counter arguments against Foucault

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2018-11-15
Legal Notice   Contact   Data protection declaration