Philosophy Lexicon of Arguments

 
Reduction, philosophy: reduction is the tracing back of a set of statements to another set of statements by rephrasing and replacing concepts of a subject domain by concepts from another subject domain. There must be conditions for the substitutability of a concept from the first domain by a concept from the second domain. An example of a reduction is the tracing back of mental concepts to physical concepts or to behavior. See also bridge laws, reductionism, translation, identity theory, materialism, physical/psychical, physicalism, eliminationism, functionalism, roles, indeterminacy.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
Dennett I 85
Reduction/Dennett: Darwin reduced teleology to non-teleology, design towards order (without creator).
As shown in Fig.
Putnam III 33
Darwin: tended to a reductionist view that the mind was to be understood by referring back to physics and chemistry. Nowadays, not even materialist philosophers are of this opinion anymore.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Den I
D. Dennett
Darwins gefährliches Erbe Hamburg 1997

Den II
D. Dennett
Spielarten des Geistes Gütersloh 1999

Pu I
H. Putnam
Von einem Realistischen Standpunkt Frankfurt 1993

Pu II
H. Putnam
Repräsentation und Realität Frankfurt 1999

Pu III
H. Putnam
Für eine Erneuerung der Philosophie Stuttgart 1997

Pu IV
H. Putnam
Pragmatismus Eine offene Frage Frankfurt 1995

Pu V
H. Putnam
Vernunft, Wahrheit und Geschichte Frankfurt 1990


> Counter arguments against Darwin
> Counter arguments in relation to Reduction

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-21