Dictionary of Arguments

Screenshot Tabelle Begriffe

 
Axiom: principle or rule for linking elements of a theory that is not proven within the theory. It is assumed that axioms are true and evident. Adding or eliminating axioms turns a system into another system. Accordingly, more or less statements can be constructed or derived in the new system. See also axiom systems, systems, strength of theories, proofs, provability.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
Chisholm II = Johann Christian Marek Zum Programm einer Deskriptiven Psychologie in Philosophische Ausätze zu Ehren Roderick M. Chisholm Marian David/Leopold Stubenberg (Ed.), Amsterdam 1986

Chisholm II 227
Axioms/Brentano: an axiom over triangles is independent of whether there are triangles, but not independent of the thinking of these concepts.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Brent I
F. Brentano
Psychology from An Empirical Standpoint (Routledge Classics) London 2014

Chisholm I
R. Chisholm
The First Person. Theory of Reference and Intentionality, Minneapolis 1981
German Edition:
Die erste Person Frankfurt 1992

Chisholm II
Roderick Chisholm

In
Philosophische Aufsäze zu Ehren von Roderick M. Ch, Marian David/Leopold Stubenberg, Amsterdam 1986

Chisholm III
Roderick M. Chisholm
Theory of knowledge, Englewood Cliffs 1989
German Edition:
Erkenntnistheorie Graz 2004


Send Link
> Counter arguments against Brentano

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2018-12-16
Legal Notice   Contact   Data protection declaration