Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Truth value: The truth value is that what is attributed to a statement or an interpreted logical formula with regard to whether it is true or false. In classical logic, there are two truth values, true and false. In multi-valued logics there can be three to infinitely many truth values. In the latter case, these are often regarded as probabilities. For trivalent logics, the third value is often "indeterminate", "neither true nor false" or "neither proved nor disproved". See also negation, strong negation, weak negation, intuitionism, probability, fuzzy logic, extensionality.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
EMD II 239
Definition designated value/vagueness/Sorites/Wright: "a is F" has an designated value if "F" is a less misleading description as "non-F" - problem: to identify the last final object at one end of the spectrum, for which "a is F" has a designated value -> bivalence.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Wri I
Cr. Wright
Wahrheit und Objektivität Frankfurt 2001

WriGH I
G. H. von Wright
Erklären und Verstehen Hamburg 2008

EMD II
G. Evans/J. McDowell
Truth and Meaning Oxford 1977

Ev I
G. Evans
The Varieties of Reference (Clarendon Paperbacks) Oxford 1989


Send Link
> Counter arguments against Wright

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-12-12