Philosophy Lexicon of Arguments

 
Truth value: The truth value is that what is attributed to a statement or an interpreted logical formula with regard to whether it is true or false. In classical logic, there are two truth values, true and false. In multi-valued logics there can be three to infinitely many truth values. In the latter case, these are often regarded as probabilities. For trivalent logics, the third value is often "indeterminate", "neither true nor false" or "neither proved nor disproved". See also negation, strong negation, weak negation, intuitionism, probability, fuzzy logic, extensionality.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
II 233ff
Truth value potential/Tugendhat: two names that denote the same object, have the same truth value potential - solution for the conflict: Frege: subsets, quotes: names of sentences - Searle: sentences never names - Tugendhat then truth value potential quasi transmission of the characteristics of sentences to names.
---
II 237
Truth Value/sentence/object/Frege: by substitutability it is proved that the truth values of sentences correspond to the object of the names - TugendhatVsFrege: only in reverse it can be proved that the objects of the names correspond to the truth values.
---
II 243
Odd Meaning/Frege: name of a sentence.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Tu I
E. Tugendhat
Vorlesungen zur Einführung in die Sprachanalytische Philosophie Frankfurt 1976

Tu II
E. Tugendhat
Philosophische Aufsätze Frankfurt 1992


> Counter arguments against Tugendhat

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-20