Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Truth Predicate: the truth predicate of a language is the "is true" expressed in this language. Its allowance can be empirically justified or attributed to the statement on the basis of the logical form. According to the redundancy theory, the truth-predicate is fundamentally superfluous. According to W.V.O. Quine (Quine, Philosophie der Logik, 2005, p. 33), the truth predicate is merely used for generalization. For example, all sentences of a particular form are true. A language containing its own truth-predicate is semantically closed. In such a language, semantic paradoxes are possible. See also expressiveness, circularity, semantic closeness, truth, truth definition, redundancy theory, self-reference, paradoxes.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
Re III 41
T-predicate/Read: according to the correspondence theory it is a substantial predicate that assigns a relational property to statements.
---
V 178
T - predicate/levels/Tarski/Sainsbury: the object language cannot contain a predicate that applies only to their true sentences. - ((s) the everyday language has such.) -> Paradoxes.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
Logic Texts
Me I Albert Menne Folgerichtig Denken Darmstadt 1988
HH II Hoyningen-Huene Formale Logik, Stuttgart 1998
Re III Stephen Read Philosophie der Logik Hamburg 1997
Sal IV Wesley C. Salmon Logik Stuttgart 1983
Sai V R.M.Sainsbury Paradoxien Stuttgart 2001


Send Link

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-10-22