Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Truth Predicate: the truth predicate of a language is the "is true" expressed in this language. Its allowance can be empirically justified or attributed to the statement on the basis of the logical form. According to the redundancy theory, the truth-predicate is fundamentally superfluous. According to W.V.O. Quine (Quine, Philosophie der Logik, 2005, p. 33), the truth predicate is merely used for generalization. For example, all sentences of a particular form are true. A language containing its own truth-predicate is semantically closed. In such a language, semantic paradoxes are possible. See also expressiveness, circularity, semantic closeness, truth, truth definition, redundancy theory, self-reference, paradoxes.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
EMD II 9
T - predicate / Tarski: uninterpreted - Davidson: searches interpretive BT (truth of simple basic concept)
II 9
Davidson / Foster: if the T-predicate true-in-L "has to explain its own meaning, i.e. what is "true-in-L" means, it can not simultaneously interpret the expressions of L.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
J. Foster
II Evans/McDowell (Hg) Truth and Meaning, Oxford 1977
J.Foster Thruth and meaning theory
EMD II
G. Evans/J. McDowell
Truth and Meaning Oxford 1977

Ev I
G. Evans
The Varieties of Reference (Clarendon Paperbacks) Oxford 1989


Send Link
> Counter arguments against Foster

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-10-24