Philosophy Lexicon of Arguments

 
Connectives: connectives are also called logical connectives or logical particles. E.g. and, or, if, then, if and only if. Negation also counts as a connective. See also truth value table, truth table.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
Re III 268 ff
Tonk/Prior/Read: Do not introduce the link first and then assign meaning. - That cannot have the consequence that another pair of statements is equivalent. - Point: analytic validity cannot show that.
Re III 269
The meaning, even that of logic links, must be independent of and be prior to the determination of the validity of the inference structures. - BelnapVsPrior: (pro analytical validity): Must not define into existence, first show how it works.
Re III 271
>Classical negation illegitimate. - Negation-free fragment. - Peirce's law. - "If P, then Q, only if P, only if Q".
Re III 273
ReadVsBelnap: the true disagreement lies beyond constructivism and realism. - Belnap's condition (conservative extension) cannot show that the classical negation is illegitimate.
- - -
Hoyningen-Huene II 66
Binding strength of the connectives: increases in the following order: ,>, v, u,


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
Logic Texts
Me I Albert Menne Folgerichtig Denken Darmstadt 1988
HH II Hoyningen-Huene Formale Logik, Stuttgart 1998
Re III Stephen Read Philosophie der Logik Hamburg 1997
Sal IV Wesley C. Salmon Logik Stuttgart 1983
Sai V R.M.Sainsbury Paradoxien Stuttgart 2001


Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-24