Philosophy Lexicon of Arguments

 
Generalization: a generalization is the extension of a statement (an attribution of properties) that applies to a domain D of objects to an object domain E that is larger than D and contains D. Time points may also belong to the subject domain. A property which fully applies to the objects of an object domain may be partially applicable to the objects of a larger domain. See also validity, general invalidity, general, predication, methods.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
Berka I 469
Generalization/generalization/Tarski: lets free variables disappear.
---
Berka I 480
Generalization/generalization/fulfillment/"at most distinguished at i-th position"/Tarski: Let x be a propositional function, assuming it is already known, which sequences satisfy the function x - by taking into account the content of the subject operation, we will only claim of the sequence f, that it satisfies the function LKx if this sequence itself satisfies the function x, and even then not stops to satisfy this sequence when the k-th term varies in any way - e.g. the function L2l1,2 is only satisfied through such a result, if the formula f1

_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Tarsk I
A. Tarski
Logic, Semantics, Metamathematics: Papers from 1923-38 Indianapolis 1983

Brk I
K. Berka/L. Kreiser
Logik Texte Berlin 1983


> Counter arguments against Tarski
> Counter arguments in relation to Generalization

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-21