La"Laj - E.g. (Ex) ">

Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

Generalization: a generalization is the extension of a statement (an attribution of properties) that applies to a domain D of objects to an object domain E that is larger than D and contains D. Time points may also belong to the subject domain. A property which fully applies to the objects of an object domain may be partially applicable to the objects of a larger domain. See also validity, general invalidity, general, predication, methods.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Item Summary Meta data

Benson Mates on Generalization - Dictionary of Arguments

I 173
Generalization/theorems/spelling/terminology/logic/Mates: E.g. (x) (y) Fxy <> (y) (x) Fx: generalized: II- LaLa "j <> La"Laj - E.g. (Ex) (Ey) fxy <> (Ey) (Ex) fxy: II- VaVa "j <> VaVa"j - E.g. (x) (P u Fx) <> (P u (x) Fx): II- La (j u y) <> (j u Lay) if a in j does not occur freely - E.g. (x) (Ey) (Fx u Gy) <> ((x) Fx u (Ey) Gy): II- laVa "(j u y) <> (Laj u Va" y) and when a in y does not occur freely and when a " in j does not occur freely.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Mate I
B. Mates
Elementare Logik Göttingen 1969

Mate II
B. Mates
Skeptical Essays Chicago 1981

Send Link
> Counter arguments against Mates
> Counter arguments in relation to Generalization

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Ed. Martin Schulz, access date 2021-08-05
Legal Notice   Contact   Data protection declaration