Philosophy Lexicon of Arguments

Search  
 
Generalization: a generalization is the extension of a statement (an attribution of properties) that applies to a domain D of objects to an object domain E that is larger than D and contains D. Time points may also belong to the subject domain. A property which fully applies to the objects of an object domain may be partially applicable to the objects of a larger domain. See also validity, general invalidity, general, predication, methods.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
I 173
Generalization/theorems/spelling/terminology/logic/Mates: E.g. (x) (y) Fxy <> (y) (x) Fx: generalized: II- LaLa "j <> La"Laj - E.g. (Ex) (Ey) fxy <> (Ey) (Ex) fxy: II- VaVa "j <> VaVa"j - E.g. (x) (P u Fx) <> (P u (x) Fx): II- La (j u y) <> (j u Lay) if a in j does not occur freely - E.g. (x) (Ey) (Fx u Gy) <> ((x) Fx u (Ey) Gy): II- laVa "(j u y) <> (Laj u Va" y) and when a in y does not occur freely and when a " in j does not occur freely.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Mate I
B. Mates
Elementare Logik Göttingen 1969

Mate II
B. Mates
0226509869 1981


> Counter arguments against Mates
> Counter arguments in relation to Generalization



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-07-24