Philosophy Lexicon of Arguments

Unintended Models, philosophy: a model results from a formula in logic, if its interpretation - the insertion of values instead of the free variables - gives a true statement. For axiom systems, one speaks of the set of models that the system allows to construct. The problem of the unintended models arises when a statement obtained in the system is indeterminate in one respect, so that in turn it allows different interpretations. See also indeterminacy.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Item Excerpt Meta data

Books on Amazon
Horwich I 402
Model/theory/interpretation/unintended model/Putnam: because the model is not fixed, regardless of the theory, T1 will be true in the model - that means, from the perspective of a meta-theory. True in all permitted models from the perspective of a theory, in which the terms of T1 do not refer from the start. - S: is then "analytical", but rather in the sense of Kant's "synthetic a priori": because "analytical" belongs more to the form of representation, and not to the "content". - It may be wrong of the world (as opposed to the WORLD), because the world is not independent of our description.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Pu I
H. Putnam
Von einem Realistischen Standpunkt Frankfurt 1993

H. Putnam
Repräsentation und Realität Frankfurt 1999

H. Putnam
Für eine Erneuerung der Philosophie Stuttgart 1997

H. Putnam
Pragmatismus Eine offene Frage Frankfurt 1995

Pu V
H. Putnam
Vernunft, Wahrheit und Geschichte Frankfurt 1990

Hor I
P. Horwich (Ed.)
Theories of Truth Aldershot 1994

Send Link
> Counter arguments against Putnam

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
Ed. Martin Schulz, access date 2017-09-26