Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

 
Infinity Axiom: The infinity axiom is an axiom of set theory, which ensures that there are infinite sets. It is formulated in e.g. such a way that a construction rule is specified for the occurrence of elements of a described set. If {x} is the successor of x, the continuation is formed by the union x U {x}. See also set theory, successor, unification, axioms.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

 
Books on Amazon
IV 83
Infinity axiom/Russell/Wittgenstein/Tractatus: 5534 would be expressed in the language in that way that there would be infinitely many names with different meanings. - Solution: if we avoid illusionary sentences (E.g. "a = a" E.g. "(Ex) x = a") (this cannot be written down in a correct term notation) - then we can avoid the problems with Russell's infinity axiom.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

W II
L. Wittgenstein
Vorlesungen 1930-35 Frankfurt 1989

W III
L. Wittgenstein
Das Blaue Buch - Eine Philosophische Betrachtung Frankfurt 1984

W IV
L. Wittgenstein
Tractatus Logico Philosophicus Frankfurt/M 1960


Send Link
> Counter arguments against Wittgenstein

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-11-21