## Philosophy Lexicon of Arguments | |||

Infinity Axiom: The infinity axiom is an axiom of set theory, which ensures that there are infinite sets. It is formulated in e.g. such a way that a construction rule is specified for the occurrence of elements of a described set. If {x} is the successor of x, the continuation is formed by the union x U {x}. See also set theory, successor, unification, axioms._____________ Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||

Author | Item | Excerpt | Meta data |
---|---|---|---|

Books on Amazon |
II 337 Axiome of Infinity/Field: Problem: set theory without Ax.o.Inf. is not "conservative". _____________ Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. |
Fie I H. Field Realism, Mathematics and Modality Oxford New York 1989 Fie II H. Field Truth and the Absence of Fact Oxford New York 2001 Fie III H. Field Science without numbers Princeton New Jersey 1980 |

> Counter arguments against **Field**

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei

Ed. Martin Schulz, access date 2017-06-29