Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Infinity, infinite, philosophy: infinity is a result of a not stopping procedure, e.g. counting or dividing, or e.g. the continued description of a circular motion. In life-related contexts, infinitely continuous processes, e.g. infinite repetition, or never ending waiting are at least logically not contradictory. A construction rule does not have to exist to give an infinite continuation, such as e.g. in the development of the decimal places of real numbers. See also boundaries, infinity axiom, repetition, finitism, numbers, complex/complexity.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Concept Summary/Quotes Sources

Colin McGinn on Infinity - Dictionary of Arguments

I 107
Infinity is applied from the outset in the intentionality. That’s just the wit of meaning. The meaning allows us access to places, times and distances, the body and the senses don’t have.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Concept/Author], [Author1]Vs[Author2] or [Author]Vs[term] resp. "problem:"/"solution:", "old:"/"new:" and "thesis:" is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

McGinn I
Colin McGinn
Problems in Philosophy. The Limits of Inquiry, Cambridge/MA 1993
German Edition:
Die Grenzen vernünftigen Fragens Stuttgart 1996

McGinn II
C. McGinn
The Mysteriouy Flame. Conscious Minds in a Material World, New York 1999
German Edition:
Wie kommt der Geist in die Materie? München 2001


Send Link
> Counter arguments against McGinn

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2022-08-12
Legal Notice   Contact   Data protection declaration