Philosophy Lexicon of Arguments

 
Type theory: The type theory is a restriction of formal systems to a kind of reference which prevents symbols of a level (of a type) from referring to symbols of the same level (the same type). This is intended to avoid paradoxes arising from a self-reference of the signs or expressions used. Original proposals for type theories are given by B. Russell (B. Russell, “Mathematical logic as based on the theory of types”, in American Journal of Mathematics, 30, 1908, pp. 222-262). See also self-reference, circularity, paradoxes, Russell's Paradox, branched type theory.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon
I 81f
E.g. a, b are bodies, the sentences " a is quadrangular", "b is red is true or false, in any case sensefull. Furthermore, the sentences "square is a spatial property" and "red is a color" be true." - In contrast, the series of words "a is a spatial property", " quadrangular is red", "color is a spatial property " should be neither true, nor false but meaningless, mere pseudo-propositions. ((s) So do not: "a is a feature".) Such pseudo-propositions can be avoided if a term (property) of n-th level is based only to such of (n-1) th stage. It follows that the assumption that if a certain property is applied to itself , it can be neither true nor false, but always is pointless.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Ca I
R. Carnap
Die alte und die neue Logik
In
Wahrheitstheorien, G. Skirbekk (Hg), Frankfurt 1996

Ca III
R. Carnap
Philosophie als logische Syntax
In
Philosophie im 20.Jahrhundert, Bd II, A. Hügli/P.Lübcke (Hg), Reinbek 1993

Ca IV
R. Carnap
Mein Weg in die Philosophie Stuttgart 1992

Ca VI
R. Carnap
Der Logische Aufbau der Welt Hamburg 1998

CA VII = PiS
R. Carnap
Sinn und Synonymität in natürlichen Sprachen
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Ca VIII (= PiS)
R. Carnap
Über einige Begriffe der Pragmatik
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982


> Counter arguments against Carnap
> Counter arguments in relation to Type Theory

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-24