## Philosophy Lexicon of Arguments | |||

| |||

Subsets, set theory: subsets are not to be confused with elements of sets which are not themselves sets. Individual sets can be formed from individual elements if additional assumptions are introduced. On the other hand, subsets may consist of 0 or more elements. Subsets are in each case related to a set whose subset they are. The cardinality of a set results from the counting of its elements and not from the counting of its subsets, since these can overlap. The set of all subsets of a set is called a power set. The empty set {0} is a subset of each set, but not an element of it. See also set theory, sets, power set, element relation._____________ Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments. | |||

Author | Item | Summary | Meta data |
---|---|---|---|

Books on Amazon |
IV 98 Subset / Member/Element / Frege: must always be distinguished. FregeVsSchröder / FregeVsareas calculus/"Gebietekalkül": - zero should not be included as an element in each class. - Otherwise, they would be dependent on the particular variety. - Once it were nothing, once it were something. (E.g. negation of a) - solution: zero as a subset (empty set). _____________ Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. |
F I G. Frege Die Grundlagen der Arithmetik Stuttgart 1987 F II G. Frege Funktion, Begriff, Bedeutung Göttingen 1994 F IV G. Frege Logische Untersuchungen Göttingen 1993 |

> Counter arguments against **Frege**

> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei

Ed. Martin Schulz, access date 2017-10-22