Philosophy Lexicon of Arguments

Screenshot Tabelle Begriffe

Supervaluation, philosophy: The term goes back to a proposal by B. van Fraassen (“The Journal of Philosophy”, Vol. 63, No. 17, (Sept. 15, 1966), pp. 481-495). If not enough information is available for a decision, the consequences of different possible decisions are compared. Cases which each time produce the truth value t are called "super-true", corresponding for the truth value f as "super-false". One problem is the persistence of truth value gaps. See also truth value clusters, truth value gaps, valuation, evaluation, vagueness, sorites, indeterminacy, dialethism, paradoxes.

Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

Author Item Summary Meta data
II 231
Supervaluation/Field: can be used as a kind of semantics with Boolean values​​: - the Boolean value of a formula is the set of all those (combinations of) candidates of extensions in which the sentence is true - which in turn is a special case of a lattice-value semantics (lattive-valued semantics).
II 288
Supervaluation/Field: E.g. "determined p" is true iff p is true in all permissible interpretations of the language.

Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Fie I
H. Field
Realism, Mathematics and Modality Oxford New York 1989

Fie II
H. Field
Truth and the Absence of Fact Oxford New York 2001

H. Field
Science without numbers Princeton New Jersey 1980

Send Link
> Counter arguments against Field

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  

> Export as BibTeX Datei
Legal Notice & Contact   Data protection declaration

Ed. Martin Schulz, access date 2018-06-20