Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Strength of theories, philosophy: theories and systems can be compared in terms of their strength. With increasing expressiveness of a system, e.g. the possibility that statements refer to themselves, however, grows the risk of paradoxes. Strength and expressiveness do not always go hand in hand. Thus, e.g. the modal logical system S5, which is stronger than the system S4, is unable to establish a unique temporal order. Aspects of strength and weakness are inter alia the set of derivable sentences, or the size of the subject area of a theory or system. See also theories, systems, modal logic, axioms, axiom systems, expansion, mitigation, areas.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

W.V.O. Quine on Strength of Theories - Dictionary of Arguments

IX 237ff
Stronger/weaker/theory/system/Quine: Problem: Comparability: it fails if both of the two systems have theorems that cannot be found in the other - it also depends on contingencies of interpretation and not on structure - if we can interpret the primitive logic characters (only "ε" in set theory) new so that we can ensure that all theorems of this system are made to translations of the theorems of the other system, then the latter system is at least as strong as the other. - If this is not possible in the other direction, one system is stronger than the other one. - Definition "ordinal strength"/set theory: numerical measure: the smallest transfinite ordinal number whose existence you cannot prove anymore in the system. - The smallest transfinite number after blocking of the apparatus shows how strong the apparatus was. - Relative strength/proof theory: Goedel incompleteness sentence: since the number theory can be developed in set theory, this means that the class of all theorems (in reality all Goedel numbers of theorems) of a present set theory can be defined in this same set theory, and different things can be proven about them - one can produce an endless series of further based on a arbitrary set theory, of which each in the proof-theoretic sense is stronger than its predecessors, and which is consistent when its predecessors were. - One must only add via Goedel numbering a new arithmetic axiom of the content so that the previous axioms are consistent. - Ordinal strength: is the richness of the universe.
---
X 71
Metalanguage/Set Theory/Quine: in the metalanguage a stronger set theory is possible than in the object language. In the metalanguage a set of z is possible so that satisfaction relation z applies. - ((s) A set that is the fulfillment relation (in form of a set of arranged pairs) - not in the object language, otherwise Grelling paradox.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Quine I
W.V.O. Quine
Word and Object, Cambridge/MA 1960
German Edition:
Wort und Gegenstand Stuttgart 1980

Quine II
W.V.O. Quine
Theories and Things, Cambridge/MA 1986
German Edition:
Theorien und Dinge Frankfurt 1985

Quine III
W.V.O. Quine
Methods of Logic, 4th edition Cambridge/MA 1982
German Edition:
Grundzüge der Logik Frankfurt 1978

Quine V
W.V.O. Quine
The Roots of Reference, La Salle/Illinois 1974
German Edition:
Die Wurzeln der Referenz Frankfurt 1989

Quine VI
W.V.O. Quine
Pursuit of Truth, Cambridge/MA 1992
German Edition:
Unterwegs zur Wahrheit Paderborn 1995

Quine VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Quine VII (a)
W. V. A. Quine
On what there is
In
From a Logical Point of View, , Cambridge, MA 1953

Quine VII (b)
W. V. A. Quine
Two dogmas of empiricism
In
From a Logical Point of View, , Cambridge, MA 1953

Quine VII (c)
W. V. A. Quine
The problem of meaning in linguistics
In
From a Logical Point of View, , Cambridge, MA 1953

Quine VII (d)
W. V. A. Quine
Identity, ostension and hypostasis
In
From a Logical Point of View, , Cambridge, MA 1953

Quine VII (e)
W. V. A. Quine
New foundations for mathematical logic
In
From a Logical Point of View, , Cambridge, MA 1953

Quine VII (f)
W. V. A. Quine
Logic and the reification of universals
In
From a Logical Point of View, , Cambridge, MA 1953

Quine VII (g)
W. V. A. Quine
Notes on the theory of reference
In
From a Logical Point of View, , Cambridge, MA 1953

Quine VII (h)
W. V. A. Quine
Reference and modality
In
From a Logical Point of View, , Cambridge, MA 1953

Quine VII (i)
W. V. A. Quine
Meaning and existential inference
In
From a Logical Point of View, , Cambridge, MA 1953

Quine VIII
W.V.O. Quine
Designation and Existence, in: The Journal of Philosophy 36 (1939)
German Edition:
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Quine IX
W.V.O. Quine
Set Theory and its Logic, Cambridge/MA 1963
German Edition:
Mengenlehre und ihre Logik Wiesbaden 1967

Quine X
W.V.O. Quine
The Philosophy of Logic, Cambridge/MA 1970, 1986
German Edition:
Philosophie der Logik Bamberg 2005

Quine XII
W.V.O. Quine
Ontological Relativity and Other Essays, New York 1969
German Edition:
Ontologische Relativität Frankfurt 2003

Quine XIII
Willard Van Orman Quine
Quiddities Cambridge/London 1987


Send Link
> Counter arguments against Quine

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2021-06-12
Legal Notice   Contact   Data protection declaration