Philosophy Dictionary of Arguments

Home Screenshot Tabelle Begriffe

 
Strength of theories, philosophy: theories and systems can be compared in terms of their strength. With increasing expressiveness of a system, e.g. the possibility that statements refer to themselves, however, grows the risk of paradoxes. Strength and expressiveness do not always go hand in hand. Thus, e.g. the modal logical system S5, which is stronger than the system S4, is unable to establish a unique temporal order. Aspects of strength and weakness are inter alia the set of derivable sentences, or the size of the subject area of a theory or system. See also theories, systems, modal logic, axioms, axiom systems, expansion, mitigation, areas.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data

Benson Mates on Strength of Theories - Dictionary of Arguments

I 158
stronger / weaker / statements / Mates: E.g. "Fa" is stronger than "(Ex) Fx" - the rule of "elimination of examples" then allows to make the conclusion dependent on the weaker statement.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution. Translations: Dictionary of Arguments
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Mate I
B. Mates
Elementare Logik Göttingen 1969

Mate II
B. Mates
Skeptical Essays Chicago 1981


Send Link
> Counter arguments against Mates

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2021-07-25
Legal Notice   Contact   Data protection declaration