Philosophy Lexicon of Arguments

 
Author Item Excerpt Meta data

 
Books on Amazon
IX 181
Russell’s paradox/Theoretical Term/Quine: how is it avoided in the theoretical terms? - If y the AF ~^j^j (the attribute of not being an attribute of itself - then by concretisation that "c(yc~cc.) - And thus in particular that yy~yy. - 1) The combination "jj" is ungrammatical, because the order of an statement function must exceed that of its arguments - 2) Even if it was not excluded: if one defines y as ~jj, y obtains a higher order than its bound variable "j" and thus one cannot use c for y in this step, which led to "yy~yy".
--
IX 196
Antinomy/Russell: should be neither true nor false, but simply meaningless - A is also avoided by limiting the variables - but after Wieners gP, the model of finite classes does not depend on the futility of the violation - they simply become wrong - with universal variables the systematic ambiguity also becomes void.
---
IX 227
Russell’s paradox/Quine: set of all...exists! However, as oc - or "class of all classes that do not ..." does not exist, but "class of all sets that do not ...".


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003


> Counter arguments against Quine

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-20