Dictionary of Arguments

Screenshot Tabelle Begriffe

 
Recursion, theory of science, philosophy: recursion is a certain form in which rules are formulated, and which makes it possible to produce infinitely many possible cases from the application of a finite system of rules. See also inserting, embedding, infinity, systems, models, theories.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
Skirbekk I 156
Recursion/recursive method/Tarski: starting from simple propositional calculus specifying the operations with which we construct composite functions
Skirbekk I 157
Recursion/Tarski: problem: composite statements are constructed from simpler propositional calculus, but not always from simpler statements. - Hence no general recursion is possible. Recursive definition of satisfaction is only possible in a much richer metalanguage (i.e. in metalanguage we have variables of a higher logical type than the in the object language.(1)


1. A.Tarski, „Die semantische Konzeption der Wahrheit und die Grundlagen der Semantik“ (1944) in: G. Skirbekk (ed.) Wahrheitstheorien, Frankfurt 1996


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

Tarski I
A. Tarski
Logic, Semantics, Metamathematics: Papers from 1923-38 Indianapolis 1983

Skirbekk I
G. Skirbekk (Hg)
Wahrheitstheorien
In
Wahrheitstheorien, Gunnar Skirbekk, Frankfurt 1977


Send Link
> Counter arguments against Tarski
> Counter arguments in relation to Recursion

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2019-05-21
Legal Notice   Contact   Data protection declaration