Philosophy Lexicon of Arguments

 
Scope, range, logic, philosophy: range is a property of quantifiers or operators to be able to be applied to a larger or smaller range. For example, the necessity operator N may be at different points of a logical formula. Depending on the positioning, the resulting statement has a considerably changed meaning. E.g. great range "It is necessary that there is an object that ..." or small range "There is an object that is necessarily ....". See also quantifiers, operators, general invariability, stronger/weaker, necessity, Barcan Formula.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Excerpt Meta data

 
Books on Amazon:
Bertrand Russell
Hintikka I 166
Scope/HintikkaVsRussell: he did not know that there is also a third possibility for the scope of a quantifier ((s) "medium scope" > Kripke,> Wolf).


(4) ~(Ex)[A(x) & (y)(A(y) > y = x ) & George IV knew, that (Scott = x)].


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.

R I
B. Russell/A.N. Whitehead
Principia Mathematica Frankfurt 1986

R II
B. Russell
Das ABC der Relativitätstheorie Frankfurt 1989

R IV
B. Russell
Probleme der Philosophie Frankfurt 1967

R VI
B. Russell
Die Philosophie des logischen Atomismus
In
Eigennamen, U. Wolf (Hg), Frankfurt 1993

R VII
B. Russell
Wahrheit und Falschheit
In
Wahrheitstheorien, G. Skirbekk (Hg), Frankfurt 1996

Hin I
Jaakko and Merrill B. Hintikka
The Logic of Epistemology and the Epistemology of Logic Dordrecht 1989

W I
J. Hintikka/M. B. Hintikka
Untersuchungen zu Wittgenstein Frankfurt 1996


Send Link
> Counter arguments against Russell

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Suggest your own contribution | > Suggest a correction | > Export as BibTeX Datei
 
Ed. Martin Schulz, access date 2017-09-26