Dictionary of Arguments

Screenshot Tabelle Begriffe

 
Premises: premises are assumptions within logical conclusions. From them follows a conclusion. Premises are written in a separate line. This makes them different from implications written in one line that contain an antecedent with one or more conditions and a post-sentence. See also syllogisms.

_____________
Annotation: The above characterizations of concepts are neither definitions nor exhausting presentations of problems related to them. Instead, they are intended to give a short introduction to the contributions below. – Lexicon of Arguments.

 
Author Item Summary Meta data
IV 85f
Condition/premise/conclusion/closure/Frege: Conditions are not assumptions. - Many mathematicians are wrong on this point. - Error: to take a thought whose truth is not yet fixed, and to draw conclusions from it. - A premise is actually e.g. "(if C then B)". - Then the truth of C may still be open.


_____________
Explanation of symbols: Roman numerals indicate the source, arabic numerals indicate the page number. The corresponding books are indicated on the right hand side. ((s)…): Comment by the sender of the contribution.
The note [Author1]Vs[Author2] or [Author]Vs[term] is an addition from the Dictionary of Arguments. If a German edition is specified, the page numbers refer to this edition.

F I
G. Frege
Die Grundlagen der Arithmetik Stuttgart 1987

F II
G. Frege
Funktion, Begriff, Bedeutung Göttingen 1994

F IV
G. Frege
Logische Untersuchungen Göttingen 1993


Send Link
> Counter arguments against Frege

Authors A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Concepts A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



Ed. Martin Schulz, access date 2019-04-21
Legal Notice   Contact   Data protection declaration